

## FINAL REPORT

# Economic, social, and environmental impacts of alternative urban development scenarios for Victoria



The Centre for International Economics is a private economic research agency that provides professional, independent and timely analysis of international and domestic events and policies.

The CIE's professional staff arrange, undertake and publish commissioned economic research and analysis for industry, corporations, governments, international agencies and individuals.

#### © Centre for International Economics 2023

This work is copyright. Individuals, agencies and corporations wishing to reproduce this material should contact the Centre for International Economics at one of the following addresses.

#### **CANBERRA**

Centre for International Economics Ground Floor, 11 Lancaster Place Canberra Airport ACT 2609

| Telephone | +61 2 6245 7800   |
|-----------|-------------------|
| Facsimile | +61 2 6245 7888   |
| Email     | cie@TheCIE.com.au |
| Website   | www.TheCIE.com.au |

#### SYDNEY

Centre for International Economics Level 7, 8 Spring Street Sydney NSW 2000

| Telephone | +61 2 9250 0800      |
|-----------|----------------------|
| Email     | ciesyd@TheCIE.com.au |
| Website   | www.TheCIE.com.au    |

#### DISCLAIMER

While the CIE endeavours to provide reliable analysis and believes the material it presents is accurate, it will not be liable for any party acting on such information.

# Contents

| Ex  | ecutive Summary                                                   | 1  |    |
|-----|-------------------------------------------------------------------|----|----|
|     | The scenarios                                                     | 1  |    |
|     | Infrastructure costs                                              | 1  |    |
|     | Economic, social and environmental impacts                        | 3  |    |
| Gle | ossary                                                            | 8  |    |
| 1   | This project                                                      | 11 |    |
| UF  | RBAN DEVELOPMENT SCENARIOS                                        |    | 13 |
| 2   | Urban development scenarios                                       | 15 |    |
|     | Population growth                                                 | 18 |    |
|     | Dwelling growth                                                   | 19 |    |
|     | Employment growth                                                 | 20 |    |
| IN  | FRASTRUCTURE COSTS                                                |    | 23 |
| 3   | Methodological steps for measuring infrastructure costs           | 25 |    |
|     | General approach                                                  | 25 |    |
|     | Capacity and service standards                                    | 26 |    |
|     | Infrastructure areas assessed                                     | 27 |    |
| 4   | Estimated infrastructure costs across scenarios                   | 28 |    |
|     | Cost per new dwelling                                             | 30 |    |
|     | Distributional impact                                             | 33 |    |
|     | Sensitivity analysis in respect to land cost in established areas | 35 |    |
|     | Summary of infrastructure costs by sector                         | 36 |    |
| IM  | IPACTS OF ALTERNATIVE DEVELOPMENT SCENARIOS                       |    | 51 |
| 5   | Overall impacts of scenarios                                      | 53 |    |
| 6   | Social impacts                                                    | 58 |    |
|     | Approach to measuring alignment with housing preferences          | 59 |    |
|     | Estimates of the value of housing                                 | 70 |    |
| 7   | Economic impacts                                                  | 79 |    |
|     | Business location productivity                                    | 80 |    |
|     | Employment impacts                                                | 83 |    |
|     | Agglomeration                                                     | 90 |    |

| 8  | Environmental impacts                                   | 91  |     |
|----|---------------------------------------------------------|-----|-----|
|    | Land take                                               | 92  |     |
|    | GHG emissions from buildings                            | 95  |     |
|    | Environmental impacts of transport                      | 100 |     |
|    | Energy use                                              | 105 |     |
|    | Other impacts not quantified                            | 106 |     |
| 9  | Equity impacts of scenarios                             | 107 |     |
|    | Distribution of accessibility                           | 109 |     |
|    | Distribution of housing by affordability                | 124 |     |
| 10 | Risks and robustness of spatial scenarios               | 131 |     |
|    | Robustness of scenarios                                 | 131 |     |
|    | Types of risks and their materiality                    | 134 |     |
| ТЕ | CHNICAL APPENDICES                                      |     | 137 |
| A  | Local infrastructure cost                               | 139 |     |
| В  | Open space                                              | 144 |     |
| С  | Community facilities                                    | 161 |     |
| D  | Education                                               | 174 |     |
| Е  | Electricity                                             | 205 |     |
| F  | Gas networks                                            | 231 |     |
| G  | Water and wastewater                                    | 236 |     |
| н  | Drainage/stormwater management                          | 259 |     |
| L  | Telecommunications                                      | 260 |     |
| J  | Health                                                  | 261 |     |
| Κ  | Other infrastructure sectors                            | 265 |     |
| L  | Detailed assumptions for assessment of housing impacts  | 266 |     |
| М  | Detailed assumptions for assessment of economic impacts | 274 |     |
| Ν  | Measuring GHG emissions                                 | 283 |     |
| 0  | Estimating changes in land take                         | 294 |     |
| Ρ  | Measuring changes in accessibility                      | 300 |     |

### **BOXES, CHARTS AND TABLES**

| 1 | Infrastructure impacts across scenarios to 2056 – total cost (\$ billions) | 2  |
|---|----------------------------------------------------------------------------|----|
| 2 | Total cost per new relocated dwelling to 2056 – compared to Dispersed Ci   | ty |
|   | scenario                                                                   | 3  |
| 3 | Summary of key indicators                                                  | 4  |

| 4    | Summary indicators of scenarios                                                                           | 6         |
|------|-----------------------------------------------------------------------------------------------------------|-----------|
| 5    | Qualitative assessment of impacts of the scenarios                                                        | 7         |
| 1.1  | Summary of impacts measured for urban growth scenarios                                                    | 11        |
| 2.1  | The five urban development scenarios                                                                      | 15        |
| 2.2  | Additional population, by scenario and functional urban area (2021 to 205                                 | i6)<br>19 |
| 2.3  | New dwellings, by scenario, functional urban areas and dwelling type (202 to 2056)                        | 21<br>20  |
| 2.4  | Additional employment, by scenario and functional urban area (2021 to 2056)                               | 21        |
| 2.5  | Additional employment, by scenario and industry sector (2056)                                             | 22        |
| 3.1  | General approach for infrastructure costs                                                                 | 25        |
| 3.2  | Summary of costs measured                                                                                 | 27        |
| 4.1  | Infrastructure impacts across scenarios to 2056 – absolute total cost (\$ billions)                       | 29        |
| 4.2  | Infrastructure impacts across scenarios to 2056 – total cost different across scenarios (\$ billions)     | 29        |
| 4.3  | Infrastructure impacts across scenarios to 2056 – total cost (\$ billions)                                | 30        |
| 4.4  | Infrastructure impacts across scenarios to 2056 – only capital cost (\$ billion                           | ns)<br>30 |
| 4.5  | Cost per new dwelling across scenarios to 2056 – absolute total cost (\$ '00                              | 0)<br>31  |
| 4.6  | Cost per new dwelling across scenarios to 2056 – total cost different across scenarios (\$ '000)          | ;<br>31   |
| 4.7  | Total cost per dwelling different across scenarios to 2056 – compared to Se                               | c3<br>32  |
| 4.8  | Funding source assumptions                                                                                | 33        |
| 4.9  | Victorian Government infrastructure investment                                                            | 34        |
| 4.10 | Distributional capital costs by stakeholder to 2056 (\$ billions)                                         | 34        |
| 4.11 | Distributional capital costs by stakeholder per annum (\$ billions)                                       | 35        |
| 4.12 | Infrastructure impacts across scenarios to 2056 – total cost ex. established area land cost (\$ billions) | 36        |
| 4.13 | Local infrastructure capital cost per dwelling assumed in the model                                       | 37        |
| 4.14 | Local infrastructure impacts across scenarios to 2056 – total cost (\$ billion                            | s)<br>38  |
| 4.15 | Open space infrastructure impacts across scenarios, 2021 to 2056 – total co (\$ billions)                 | ost<br>39 |
| 4.16 | Community facility provision                                                                              | 40        |
| 4.17 | Community infrastructure impacts across scenarios, 2021 to 2056 – total c (\$ billions)                   | ost<br>41 |
| 4.18 | Total school infrastructure cost to 2056 – total cost (\$ billions)                                       | 43        |
| 4.19 | Electricity infrastructure impacts across scenarios to 2056 – total cost (\$ billions)                    | 45        |

| 4.20 | Estimated additional water and wastewater expenditure – total cost (\$ millions)     | 47 |
|------|--------------------------------------------------------------------------------------|----|
| 4.21 | Transport infrastructure impacts across scenarios to 2056 – total cost (\$ billions) | 49 |
| 4.22 | Transport capital cost by mode across scenarios to 2056 (\$ billions)                | 49 |
| 4.23 | Transport operating cost by mode across scenarios to 2056 – (\$ billions)            | 50 |
| 5.1  | Translating indicators into an overall framework                                     | 53 |
| 5.2  | Summary indicators of scenarios                                                      | 55 |
| 5.3  | Summary of physical impacts of scenarios                                             | 56 |
| 5.4  | Qualitative assessment of impacts of the scenarios                                   | 56 |
| 6.1  | Summary of social indicators of scenarios                                            | 58 |
| 6.2  | Approach to valuing residential property                                             | 59 |
| 6.3  | Measuring housing impacts                                                            | 60 |
| 6.4  | Market for housing in an area                                                        | 62 |
| 6.5  | Price elasticity of housing demand by submarket                                      | 63 |
| 6.6  | Job access density by car and public transport, by scenario and region               | 64 |
| 6.7  | Job access density by private vehicle, 2056                                          | 65 |
| 6.8  | Job access density by public transport, 2056                                         | 65 |
| 6.9  | Service types for which we will measure accessibility                                | 66 |
| 6.10 | Location of activity centres in Melbourne                                            | 67 |
| 6.11 | Average time to a metropolitan activity centre via private car, 2056                 | 68 |
| 6.12 | Average time to a major activity centre via public transport, 2056                   | 68 |
| 6.13 | Average time to access a university via public transport, 2056                       | 69 |
| 6.14 | Average time to access a hospital emergency room via car, 2056                       | 70 |
| 6.15 | Undiscounted WTP for housing at 2036 and 2056                                        | 72 |
| 6.16 | Time profile of the net value of housing                                             | 73 |
| 6.17 | Discounted net value of housing across all years                                     | 74 |
| 6.18 | Scenario 1 housing impacts by region and dwelling type                               | 77 |
| 6.19 | Scenario 5 housing impacts by region and dwelling type                               | 78 |
| 7.1  | Impacts on income in total and per person                                            | 80 |
| 7.2  | Measuring business location productivity impacts                                     | 81 |
| 7.3  | Estimated business location productivity impacts                                     | 82 |
| 7.4  | Victoria labour force participation 2021                                             | 83 |
| 7.5  | Melbourne labour force participation 2021                                            | 84 |
| 7.6  | Victoria unemployment rate 2021                                                      | 84 |
| 7.7  | Melbourne unemployment rate 2021                                                     | 85 |
| 7.8  | Employment rate for 15-64 year olds and accessibility to jobs by car 2021            | 86 |
| 7.9  | Employment rate for 15-64 year olds and accessibility to jobs by public              |    |
|      | transport 2021                                                                       | 86 |
| 7.10 | Labour force participation impacts from scenarios                                    | 89 |
| 7.11 | Agglomeration impacts across scenarios                                               | 90 |

7.11 Agglomeration impacts across scenarios

| 8.1  | Summary of environmental impacts                                                     | 91        |
|------|--------------------------------------------------------------------------------------|-----------|
| 8.2  | Residential and local infrastructure land requirements 2021 to 2036                  | 93        |
| 8.3  | Residential and local infrastructure land requirements 2036 to 2056                  | 93        |
| 8.4  | Total land requirements 2021 to 2056                                                 | 94        |
| 8.5  | Catchment scale land use in Victoria                                                 | 95        |
| 8.6  | Methodology for estimating GHG emissions from buildings                              | 96        |
| 8.7  | Operational emissions of new residential buildings                                   | 97        |
| 8.8  | Operational emissions relative to Dispersed City scenario                            | 97        |
| 8.9  | Embodied emissions by scenario over time                                             | 98        |
| 8.10 | Total emissions from residential buildings from 2021 to 2056                         | 98        |
| 8.11 | Environmental impact from residential buildings                                      | 99        |
| 8.12 | Total daily CO2 emissions in 2036                                                    | 100       |
| 8.13 | Total daily CO2 emissions in 2056                                                    | 101       |
| 8.14 | Difference in tailpipe GHG emissions across scenarios from 2021 to 2056              | 101       |
| 8.15 | GHG emissions from EV operation                                                      | 102       |
| 8.16 | Parameter values used for air and noise pollution                                    | 103       |
| 8.17 | Air pollution transport externality (2021 to 2056)                                   | 104       |
| 8.18 | Noise pollution transport externality (2021 to 2056)                                 | 104       |
| 8.19 | Air pollution and noise pollution by scenario                                        | 104       |
| 8.20 | GHG emissions (excluding tailpipe) under alternative rates of                        |           |
|      | decarbonisation                                                                      | 105       |
| 8.21 | Operational electricity use                                                          | 106       |
| 9.1  | SEIFA disadvantage across Melbourne 2021                                             | 108       |
| 9.2  | SEIFA disadvantage across Victoria 2021                                              | 108       |
| 9.3  | Job access density by private vehicle, Victoria in 2018                              | 109       |
| 9.4  | Job access density by public transport, Victoria in 2018                             | 110       |
| 9.5  | Job access density by private vehicle, Melbourne in 2018                             | 110       |
| 9.6  | Job access density by public transport, Melbourne in 2018                            | 111       |
| 9.7  | Job access density by private vehicle and disadvantage, 2018                         | 111       |
| 9.8  | Job access density by public transport and disadvantage, 2018                        | 112       |
| 9.9  | Job access density by private vehicle, Victoria in 2056, Compact City                |           |
|      | scenario                                                                             | 112       |
| 9.10 | Job access density by private vehicle, Victoria in 2056, Distributed State scenario  | 113       |
| 9.11 | Job access density by public transport, Victoria in 2056, Compact City scenario      | 114       |
| 9.12 | Job access density by public transport, Victoria in 2056, Distributed State scenario | 114       |
| 9.13 | Job access density by private vehicle, Melbourne in 2056, Compact City scenario      | 115       |
| 9.14 | Job access density by private vehicle, Melbourne in 2056, Distributed Starscenario   | te<br>116 |

| Job access density by public transport, Melbourne in 2056, Compact City scenario                                                        | ,<br>116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Job access density by public transport, Melbourne in 2056, Distributed St scenario                                                      | ate<br>117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Distribution of increases in job access density by car over time, Dispersed<br>City scenario                                            | 1<br>118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Distribution of percentage increases in job access density by car over time<br>Dispersed City scenario                                  | e,<br>118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Distribution of difference in job access density by car, Compact City scen<br>compared to Dispersed City scenario                       | ario<br>119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Distribution of difference in job access density by car, Consolidated City scenario compared to Dispersed City scenario                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Distribution of difference in job access density by car, Network of Cities scenario compared to Dispersed City scenario                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Distribution of difference in job access density by car, Distributed State scenario compared to Dispersed City scenario                 | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Distribution of increases in job access density by public transport over tim<br>Dispersed City scenario                                 | ne,<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Distribution of difference in job access density by public transport, Comp<br>City scenario relative to Dispersed City scenario         | act<br>122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Distribution of difference in job access density by public transport,<br>Consolidated City scenario relative to Dispersed City scenario | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Distribution of difference in job access density by public transport, Netwo<br>of Cities scenario relative to Dispersed City scenario   | ork<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Distribution of difference in job access density by public transport,<br>Distributed State scenario relative to Dispersed City scenario | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Approach to estimating the distribution of dwelling sale prices and rents                                                               | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Distribution of sale prices in 2036 by scenario                                                                                         | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Distribution of rents in 2036 by scenario                                                                                               | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Share of properties for sale below \$750 000 in 2036, assuming no price growth                                                          | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Share of rental below \$500/week in 2036, assuming no price growth                                                                      | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Distribution of sale prices in 2056 by scenario                                                                                         | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Distribution of rents in 2056 by scenario                                                                                               | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Share of properties for sale below \$750 000 in 2056, assuming no price growth                                                          | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Share of rental below \$500/week in 2056, assuming no price growth                                                                      | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Housing preference impacts estimated under alternative assumptions                                                                      | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Business preference impacts estimated under alternative assumptions                                                                     | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GHG emission impacts estimated under alternative assumptions                                                                            | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Difference in housing impacts depending on how much is delivered                                                                        | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Estimated business location productivity impacts                                                                                        | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Local infrastructure rates (capital cost), by type of development                                                                       | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                         | Job access density by public transport, Melbourne in 2056, Compact City scenario<br>Job access density by public transport, Melbourne in 2056, Distributed St scenario<br>Distribution of increases in job access density by car over time, Dispersed City scenario<br>Distribution of percentage increases in job access density by car over time<br>Dispersed City scenario<br>Distribution of difference in job access density by car, Compact City scen<br>compared to Dispersed City scenario<br>Distribution of difference in job access density by car, Consolidated City<br>scenario compared to Dispersed City scenario<br>Distribution of difference in job access density by car, Network of Cities<br>scenario compared to Dispersed City scenario<br>Distribution of difference in job access density by car, Network of Cities<br>scenario compared to Dispersed City scenario<br>Distribution of difference in job access density by car, Distributed State<br>scenario compared to Dispersed City scenario<br>Distribution of difference in job access density by public transport over tim<br>Dispersed City scenario<br>Distribution of difference in job access density by public transport, Comp<br>City scenario relative to Dispersed City scenario<br>Distribution of difference in job access density by public transport, Netwo<br>of Cities scenario relative to Dispersed City scenario<br>Distribution of difference in job access density by public transport, Netwo<br>of Cities scenario relative to Dispersed City scenario<br>Distribution of difference in job access density by public transport, Netwo<br>of Cities scenario relative to Dispersed City scenario<br>Distribution of difference in job access density by public transport,<br>Distribution of difference in job access density by public transport,<br>Distribution of difference in job access density by public transport,<br>Distribution of ale prices in 2036 by scenario<br>Distribution of sale prices in 2036 by scenario<br>Share of properties for sale below \$750 000 in 2036, assuming no price<br>growth<br>Share of rental below \$500/week in 2056, assuming no price growth<br>Housing preference impacts estim |

| A.2  | Additional local infrastructure capital costs for urban renewal of industria                      | al  |
|------|---------------------------------------------------------------------------------------------------|-----|
|      | areas                                                                                             | 141 |
| A.3  | Local infrastructure capital cost per dwelling assumed in the model                               | 142 |
| A.4  | Local infrastructure impacts across scenarios – total cost (\$ billions)                          | 143 |
| B.1  | Open space infrastructure impacts across scenarios                                                | 144 |
| B.2  | Distribution of existing public open space types                                                  | 145 |
| B.3  | Public open space provision in Victoria at a SA3 level                                            | 147 |
| B.4  | Current open space provision by functional urban area                                             | 147 |
| B.5  | Conceptual open space provision by SA3                                                            | 148 |
| B.6  | Urban Area                                                                                        | 149 |
| B.7  | Urban Area by region                                                                              | 149 |
| B.8  | Current excess capacity and allowance for additional population                                   | 150 |
| B.9  | Significant and functional urban areas that can accommodate increase in population density by SA3 | 151 |
| B.10 | Metropolitan Melbourne urban areas that can accommodate increase in population density by SA3     | 151 |
| B.11 | Additional population until 2056 and open space capacity by functional urban area and scenario    | 152 |
| B.12 | Additional open space requirements, by scenario (2056)                                            | 153 |
| B.13 | Land cost for open space provision                                                                | 154 |
| B.14 | Capital expenditure for open space provision                                                      | 154 |
| B.15 | Operating expenditure for open space provision                                                    | 155 |
| B.16 | Open space infrastructure impacts across scenarios, 2021 to 2056                                  | 156 |
| B.17 | Open space infrastructure impacts across scenarios 2021 to 2056, by stakeholder                   | 158 |
| B.18 | Share of funding by stakeholder                                                                   | 158 |
| B.19 | Current open space provision by SA3                                                               | 159 |
| C.1  | Community infrastructure impacts across scenarios                                                 | 161 |
| C.2  | Community facility provision                                                                      | 162 |
| C.3  | Provision and Size assumptions for inner Melbourne and other regions                              | 163 |
| C.4  | Excess capacity assumptions                                                                       | 164 |
| C.5  | Land cost for community facilities                                                                | 164 |
| C.6  | Capital expenditure by type of community facility                                                 | 165 |
| C.7  | Community infrastructure impacts across scenarios                                                 | 166 |
| C.8  | Community infrastructure impacts across scenarios, sensitivity analysis                           | 167 |
| C.9  | Community infrastructure funding by stakeholder (2056)                                            | 167 |
| C.10 | Share of funding by stakeholder (\$b)                                                             | 168 |
| C.11 | Sport and Recreation hub, 0.45-hectare site area                                                  | 168 |
| C.12 | Sport and Recreation hub, 0.6-hectare site area                                                   | 170 |
| C.13 | Art and Cultural hub, 0.24-hectare site area                                                      | 172 |
| D.1  | Total school infrastructure cost until 2056                                                       | 176 |
| D.2  | Total capital cost until 2056                                                                     | 176 |

|   | ۰. |   |  |
|---|----|---|--|
| 3 |    |   |  |
|   | ۰. | N |  |

| D.3  | Victorian education system, by school type and provider (2022)                                              | 178        |
|------|-------------------------------------------------------------------------------------------------------------|------------|
| D.4  | Share of governmental provision by school type, 2013 to 2022                                                | 179        |
| D.5  | Governmental provision by LGA enrolment size                                                                | 179        |
| D.6  | General Assumptions                                                                                         | 181        |
| D.7  | School type by age and share of enrolment                                                                   | 183        |
| D.8  | Priority responses for additional primary and secondary school enrolmen                                     | ts         |
|      |                                                                                                             | 184        |
| D.9  | Flow chart of additional enrolment allocation beyond existing capacity                                      | 185        |
| D.10 | Government primary school enrolments and capacity (2023)                                                    | 187        |
| D.11 | Government secondary school enrolments and capacity (2023)                                                  | 187        |
| D.12 | 2 Additional enrolment in the Victorian kindergarten system, 2023 to 2056                                   | 188        |
| D.13 | Additional enrolment in government (solid) and non-government (pattern <i>primary</i> schools, 2023 to 2056 | n)<br>189  |
| D.14 | Additional enrolment in government (solid) and non-government (pattern secondary schools, 2023 to 2056      | n)<br>189  |
| D.15 | Description of indicators for result tables                                                                 | 190        |
| D.16 | Additional infrastructure for Victorian KINDERGARTEN (excl. CENT<br>BASED DAY CARE)                         | RE-<br>192 |
| D.17 | Additional infrastructure for Victorian CENTRE-BASED DAY CARE                                               | 193        |
| D.18 | Additional school infrastructure for government PRIMARY schools                                             | 193        |
| D.19 | Additional school infrastructure for total Victorian PRIMARY schools                                        | 194        |
| D.20 | Additional school infrastructure for government SECONDARY schools                                           | 195        |
| D.21 | Additional school infrastructure for total Victorian SECONDARY school                                       | ols        |
|      |                                                                                                             | 195        |
| D.22 | Land requirement for new kindergarten and schools, by region in Victoria                                    | a          |
|      |                                                                                                             | 196        |
| D.23 | Land cost for new schools                                                                                   | 197        |
| D.24 | Capital expenditure (excl. land cost) by type of expansion on existing site                                 | s<br>198   |
| D.25 | Capital expenditure (excl. land cost) for new kindergarten and schools                                      | 198        |
| D.26 | o Total education infrastructure cost until 2056                                                            | 199        |
| D.27 | 7 Total capital cost until 2056                                                                             | 199        |
| D.28 | Government education infrastructure impact across scenarios until 2056                                      | 200        |
| D.29 | P Total Victorian education infrastructure impact across scenarios until 205                                | 56         |
|      |                                                                                                             | 201        |
| D.30 | Education infrastructure funding by stakeholder (2021 to 2056)                                              | 202        |
| D.31 | Education infrastructure funding by stakeholder (2021 to 2056)                                              | 204        |
| E.1  | Electricity infrastructure across scenarios by 2056                                                         | 206        |
| E.2  | Cumulative electricity infrastructure costs across scenarios by 2056                                        | 206        |
| E.3  | Definitions used throughout this chapter                                                                    | 208        |
| E.4  | Annual residential operational consumption for different drivers (2021)                                     | 209        |
| E.5  | Victoria Climate Zone Map                                                                                   | 210        |

Residential operational consumption and peak demand forecast

E.6

| E.7  | Victorian electricity consumption profile for non-residential connections                              | 212 |
|------|--------------------------------------------------------------------------------------------------------|-----|
| E.8  | Operational consumption per job, by industry sector                                                    | 213 |
| E.9  | Conceptual methodology to estimate total electricity infrastructure need                               | 214 |
| E.10 | Zone substations by distributor                                                                        | 215 |
| E.11 | Distribution Network Capacity                                                                          | 216 |
| E.12 | Secure capacity of Victorian distribution substations                                                  | 217 |
| E.13 | Approach to estimate total operational maximum demand by zone                                          | 210 |
| T 14 |                                                                                                        | 218 |
| E.14 | Zone substation secure capacity snortiall, Scenario 3 (2036)                                           | 219 |
| E.15 | consumption forecast in 2056 — WITHOUT EV's                                                            | 220 |
| E.16 | Estimated consumption by scenario relative to AEMO ISP (2022) consumption forecast in 2056 — WITH EV's | 221 |
| E.17 | Additional capacity and existing capacity, by scenario (2036 and 2056)                                 | 222 |
| E.18 | Total installed capacity                                                                               | 223 |
| E.19 | Annual additional power generation and transmission cost                                               | 223 |
| E.20 | LRMC methodologies                                                                                     | 224 |
| E.21 | LRMC (\$/kVA/year) by relative increase in capacity                                                    | 226 |
| E.22 | Cost for distribution network augmentation and maintenance                                             | 226 |
| E.23 | Electricity infrastructure across scenarios by 2056                                                    | 227 |
| E.24 | Cumulative electricity infrastructure costs across scenarios by 2056                                   | 227 |
| E.25 | AEMO ISP (2022) Scenario Input Assumptions                                                             | 229 |
| E.26 | Network and indicative generation projects in the optimal development p                                | ath |
|      |                                                                                                        | 230 |
| F.1  | Natural Gas infrastructure impacts                                                                     | 231 |
| F.2  | Natural gas consumption and maximum daily demand (2056)                                                | 233 |
| F.3  | Natural gas infrastructure cost forecast                                                               | 234 |
| F.4  | Natural gas infrastructure impacts across scenarios                                                    | 235 |
| G.3  | Victorian urban water corporations                                                                     | 238 |
| G.4  | Number of residential and non-residential properties connected to water supply                         | 239 |
| G.5  | Total volume of water supplied, average 2017/18 to 2021/22                                             | 239 |
| G.6  | Share of water supplied to residential properties, average 2017/18 to 2021/22                          | 240 |
| G.7  | Average volume of residential water supplied per property                                              | 240 |
| G.8  | 2056 population serviced by corporations in the Melbourne area                                         | 241 |
| G.9  | 2056 population serviced by corporations in the coastal areas outside                                  |     |
|      | Melbourne                                                                                              | 242 |
| G.10 | 2056 population serviced by corporations in the inland areas outside Melbourne                         | 242 |

211

243

| G.12 Change in job numbers rel                   | ative to Scenario 0, 2056                      | 243          |
|--------------------------------------------------|------------------------------------------------|--------------|
| G.13 Separate houses as a share                  | of all properties service by corporation       | 244          |
| G.14 Change in share of separat                  | e houses, compared to Scenario 0 in 2056       | 245          |
| G.15 Costs of water supply option                | on, levelized cost \$/kL (2019-20)             | 249          |
| G.16 Estimated volume for each by Scenario       | Water Corporation of Residential Water in      | 2056<br>249  |
| G.17 Estimated volume of Non-                    | Residential Water in 2056                      | 250          |
| G.18 Additional water supply co                  | ost to 2036                                    | 250          |
| G.19 Additional water supply co                  | ost to 2056                                    | 251          |
| G.20 Additional wastewater trea                  | atment cost to 2036                            | 253          |
| G.21 Additional wastewater trea                  | atment cost to 2056                            | 254          |
| G.22 Estimated network cost pe                   | r customer, by water and wastewater            | 255          |
| G.21 Additional WATER NET                        | WORK cost to 2036                              | 256          |
| G.22 Additional WATER NET                        | WORK cost to 2056                              | 256          |
| G.23 Additional WASTEWAT                         | ER NETWORK cost to 2036                        | 257          |
| G.24 Additional WASTEWAT                         | ER NETWORK cost to 2056                        | 257          |
| G.25 Summary of estimated add                    | litional water and wastewater expenditure      | 258          |
| J.1 Victorian private and pub                    | lic hospitals                                  | 263          |
| J.2 Demand and supply facto                      | rs affect future demand and infrastructure co  | sts 264      |
| L.1 Assumed floor size of new                    | v dwellings                                    | 267          |
| L.2 Comparing historical price<br>(2003 to 2022) | growth between Melbourne and Rest of Vic       | toria<br>267 |
| L.3 Dwelling value growth ass                    | umptions                                       | 267          |
| L.4 Construction cost estimate source            | es per dwelling, by dwelling type and organisa | ation<br>269 |
| L.5 Assumed rate of real escal                   | ation for dwelling construction costs          | 269          |
| L.6 Share of dwellings in each                   | region that are greenfield developments        | 270          |
| L.7 Value of agricultural land                   |                                                | 270          |
| L.8 Churn rate assumptions for                   | or dwellings                                   | 271          |
| L.9 Hedonic modelling access                     | sibility                                       | 272          |
| L.10 Coefficient on job access d                 | ensity by mode and dwelling type               | 273          |
| M.1 Industries in scenarios to b                 | road categories of non-residential space       | 274          |
| M.2 Floor space per job                          |                                                | 275          |
| M.3 Costs of construction                        |                                                | 275          |
| M.4 Greenfield shares for new                    | non-residential space                          | 276          |
| M.5 Cost estimates from the Vi                   | ctorian Building Authority 2022                | 276          |
| M.6 Lease rates used for analys                  | is                                             | 277          |
| M.7 Industrial lease rates                       |                                                | 278          |
| M.8 Office lease rates                           |                                                | 278          |
| M.9 Retail lease rates                           |                                                | 279          |
| M.10 Comparison of Valuer Ger<br>by region type  | neral and model capital improved value estin   | nates<br>279 |

| · • |   |   |   |
|-----|---|---|---|
| - • |   |   |   |
|     | - | - | - |

| M.11 | Capital improved value for Industrial property — model versus Valuer                   | 200 |
|------|----------------------------------------------------------------------------------------|-----|
|      | General estimates                                                                      | 280 |
| M.12 | Capital improved value for Commercial property — model versus Valuer General estimates | 280 |
| M.13 | Capital improved value for Commercial property — model versus Valuer                   |     |
|      | General estimates excluding Melbourne City                                             | 281 |
| M.14 | Impact of accessibility on willingness to pay                                          | 282 |
| N.1  | Electrical emissions intensity over time                                               | 284 |
| N.2  | Emissions intensity for gas and firewood                                               | 284 |
| N.3  | Total yearly energy use per dwelling                                                   | 285 |
| N.4  | Total yearly energy use per person                                                     | 286 |
| N.5  | Decrease in gas consumption over time                                                  | 287 |
| N.6  | New dwelling type distribution                                                         | 287 |
| N.7  | Impact of PV on electricity drawn from the grid                                        | 288 |
| N.8  | Number of new dwellings by class and scenario                                          | 288 |
| N.9  | Change in occupancy rates relative to climate zone 6                                   | 289 |
| N.10 | Change in occupancy rates relative to scenario 1                                       | 290 |
| N.11 | Forecasted occupancy rates for scenario 1 climate zone 6                               | 290 |
| N.12 | Embodied emissions intensity for different dwelling types                              | 292 |
| N.13 | Gross new dwelling construction by scenario                                            | 292 |
| N.14 | Average floor size by dwelling type                                                    | 293 |
| O.1  | Meshblock included as Urban Area by Functional Urban Area                              | 294 |
| O.2  | Average site area per new dwelling in Land and Housing Supply 2022                     |     |
|      | publication                                                                            | 296 |
| O.3  | Average size of rezoned regional lots                                                  | 296 |
| O.4  | Average site area per new dwelling assumed in our modelling                            | 297 |
| O.5  | Future planned land take in completed PSPs                                             | 298 |
| P.1  | Calculating access density metrics                                                     | 300 |

#### 1

## Executive Summary

Infrastructure Victoria has developed five urban development scenarios to capture a variety of outcomes for how people, dwellings and jobs growth occurs across Victoria from now to 2056. These are documented in detail in SGS 2022, Urban Development Scenarios and set out in chapter 2. The CIE has been tasked with assessing the economic, social and environmental impacts of these scenarios and the infrastructure costs associated with these scenarios.

## The scenarios

The five scenarios considered have the same population, number of dwellings and jobs across Victoria in 2056, but allocate these in different ways across Victoria. The five scenarios are characterised as follows:

- Scenario 1 a Compact City scenario where a greater share of population and employment growth is in inner areas of Melbourne
- Scenario 2 a Consolidated City scenario where a greater share of population and employment growth is in middle and inner areas of Melbourne
- Scenario 3 a Dispersed City scenario with a higher share of growth is in greenfield areas of Melbourne
- Scenario 4 a Network of Cities scenario that allocates a higher share of growth to regional cities
- Scenario 5 a Distributed State scenario that allocates a higher share of growth to regional towns and other rural areas.

## Infrastructure costs

Future urban development requires substantial additional infrastructure under all scenarios. This includes utilities, transport, local infrastructure and community infrastructure.

- Costs vary by development scenario due to differences in existing infrastructure capacity, the shares of greenfield and infill development, as well as differences in regional population density, dwelling typology and employment composition.
- Total estimated infrastructure costs by scenario are above \$149 billion for all scenarios (table 1). This excludes all cost that do not differ by scenario, for example, transport projects that would have been delivered across every scenario or electricity generation costs which are the same across each scenario.

- Transport and local infrastructure have the most substantial infrastructure cost that differ across scenarios, followed by education and open space. Other utilities (e.g., gas, water and wastewater) and community facilities account only for a minor share.
- Costs are highest for scenarios with high shares of greenfield development, such as the Dispersed City scenario (\$190 billion). The Consolidated City and Network of Cities scenarios have similar costs at \$179 billion and \$172 billion, respectively. The Compact City scenario has the lowest cost across all scenarios (\$149 billion). The Distributed State has a cost of \$169 billion.
- Total infrastructure cost per *new* dwelling that differ by scenario ranges from \$82,000 to \$105,000 across scenarios.

| Sector                                   | Sc1          | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|------------------------------------------|--------------|----------------------|----------------|----------------------|----------------------|
|                                          | Compact City | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                                          | \$b, real    | \$b, real            | \$b, real      | \$b, real            | \$b, real            |
| Local infrastructure                     | 42           | 55                   | 68             | 65                   | 70                   |
| Education                                | 34           | 23                   | 23             | 20                   | 15                   |
| Open space                               | 18           | 9                    | 6              | 4                    | 3                    |
| Community facilities                     | 13           | 9                    | 6              | 7                    | 2                    |
| Electricity                              | 5            | 7                    | 13             | 13                   | 11                   |
| Gas                                      | 0            | 0                    | 0              | 0                    | 0                    |
| Water and Wastewater                     | 9            | 11                   | 13             | 17                   | 20                   |
| Transport                                | 28           | 57                   | 61             | 52                   | 48                   |
| Total                                    | 149          | 172                  | 190            | 179                  | 169                  |
| Difference to<br>Dispersed City scenario | -41          | -18                  | 0              | -10                  | -20                  |

#### 1 Infrastructure impacts across scenarios to 2056 – total cost (\$ billions)

Note: Figures are denoted in real 2022/23 dollars. Figures have been rounded to the nearest billion and may not add up. Data source: CIE.

The overall total costs vary only to some extent in absolute terms across scenarios. For many of these indicators it is most useful to compare across scenarios. We use the Dispersed City scenario for comparison as it represents a continuation of recent trends.

There are two main drivers of the cost differential between scenarios:

- Firstly, the Compact City and Consolidated City scenarios tend to exhibit lower costs in the transport and utilities' sectors. However, higher capital and land costs in established areas contribute to higher community and education infrastructure costs in denser regions. The lower transport/utility costs for these two scenarios are offset by the higher community/education infrastructure costs, resulting in a lower overall cost differential.
- Secondly, at least 62 percent of new dwellings are constructed in the same region across all scenarios. This means that the cost differences between scenarios is driven by 38 per cent of new relocated dwellings in which location differs in each scenario.

If we compare differences across scenarios on a cost per relocated dwelling<sup>1</sup> basis, the Compact City scenario has a highly material lower cost of \$59 000 per new relocated dwelling compared to the Dispersed City scenario (table 2). Similarly, the Consolidated City and Distributed State scenario have a lower cost of \$26 000 and \$29 000 per dwelling compared to the Dispersed City scenario, respectively.

This means that the Compact City and Consolidated City scenarios offer the largest cost advantages when it comes to infrastructure cost per relocated dwelling compared to the Dispersed City scenario. The Distributed State scenario also has cost advantages per relocated dwelling; however, it has worse outcomes than the Compact City and Consolidated City scenarios when looking at economic, social and environmental impacts.

# 2 Total cost per new relocated dwelling to 2056 – compared to Dispersed City scenario

| Sector               | Sc1           | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|----------------------|---------------|----------------------|----------------|----------------------|----------------------|
|                      | Compact City  | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                      | \$ '000, real | \$ '000, real        | \$ '000, real  | \$ '000, real        | \$ '000, real        |
| Local infrastructure | -37           | -18                  | 0              | -4                   | 3                    |
| Education            | 16            | 0                    | 0              | -3                   | -10                  |
| Open space           | 18            | 4                    | 0              | -2                   | -5                   |
| Community facilities | 10            | 4                    | 0              | 1                    | -6                   |
| Electricity          | -12           | -9                   | 0              | 0                    | -3                   |
| Gas                  | 0             | 0                    | 0              | 0                    | 0                    |
| Water and Wastewater | -6            | -3                   | 0              | 6                    | 10                   |
| Transport            | -47           | -5                   | 0              | -13                  | -18                  |
| Total                | -59           | -26                  | 0              | -15                  | -29                  |

Note: Figures are denoted in real 2022/23 dollars. Figures may not add up due to rounding. *Data source:* CIE.

## Economic, social and environmental impacts

There are a very wide range of possible indicators to measure for the outcomes from alternative spatial scenarios. This study has sought to focus on those that are most related to where people live and work and the type of housing they live in and those that are most material. A summary of key indicators is shown in table 3.

<sup>&</sup>lt;sup>1</sup> The relocated dwellings are those above the minimum across scenarios for each SA2.

## 3 Summary of key indicators

| Indicator                                         | Description                                                                                                                                                                                                                                                                                                                                                                                      |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Housing and social indicators                     |                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Net value of housing                              | This measures the value people place on housing provided by the scenario, less<br>the cost of constructing the housing. This indicator is high if housing is located<br>in areas that people want to live in and in types of housing people want to live<br>in, and that is less costly to construct. This changes over time particularly<br>reflecting the accessibility of a location to jobs. |  |
|                                                   | This is the main social indicator.                                                                                                                                                                                                                                                                                                                                                               |  |
| Share of dwellings that are detached              | The share of dwellings that are detached is an indicator of housing type. Note that no normative conclusions relate to this indicator.                                                                                                                                                                                                                                                           |  |
| Accessibility metrics                             | The ability of people to access jobs and services close to where they live. The summary table shows access measures to jobs — access to other activities is shown in the main report.                                                                                                                                                                                                            |  |
| Public transport mode share                       | The share of trips taken by public transport. A higher value is considered positive, as this reduces congestion on roads.                                                                                                                                                                                                                                                                        |  |
| Share of dwellings that are affordable            | Using sale and rent thresholds, this indicator shows the expected proportion of dwellings below a threshold as an indicator of the availability of affordable housing.                                                                                                                                                                                                                           |  |
| Economic indicators                               |                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Business location productivity                    | Business location productivity represents the value of non-residential space less the costs of constructing it. It is higher where jobs are located in areas with high lease rates (e.g. the Melbourne CBD).                                                                                                                                                                                     |  |
| Agglomeration                                     | Agglomeration measures spillovers from businesses being closer together. This has overlaps with business location productivity, so it is not included in total income effects.                                                                                                                                                                                                                   |  |
| Employment impacts                                | Employment impacts measures the differences in labour force participation arising from people's access to jobs. It is highest for scenarios where people have the highest access to jobs.                                                                                                                                                                                                        |  |
| Income                                            | Income measures the value per person on average over the period that comes<br>from business location productivity and employment impacts. Note that this is<br>not annual income, but income over the period stated.                                                                                                                                                                             |  |
| Environmental indicators                          |                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| GHG emissions                                     | GHG emissions covers GHG emissions from residential buildings, both the operation of the building and the embodied emissions in constructing the building, and GHG emissions from vehicles. Vehicle emissions includes tailpipe emissions from vehicles using petrol and diesel and emissions from generating electricity for electric vehicles.                                                 |  |
|                                                   | GHG emissions fall rapidly over time in line with a shift to electric vehicles and production of electricity becoming less carbon intensive.                                                                                                                                                                                                                                                     |  |
| Transport externalities (noise and air pollution) | Transport externalities captures the cost of noise and air pollution from transport activities.                                                                                                                                                                                                                                                                                                  |  |
| Additional urban land take                        | The additional urban land take is the area required to be converted from current<br>uses to urban uses. This is higher for scenarios with more greenfield and<br>regional development. Additional urban land take could replace existing uses of<br>land such as farming or areas of native vegetation.                                                                                          |  |

Source: CIE.

A summary of quantitative indicators of the scenarios is shown in table 4. For many of these indicators it is most useful to compare across scenarios. For comparison we use the Dispersed City scenario as it represents a continuation of recent trends.

- The Compact City scenario provides the highest net value of housing. This is because it has more housing in locations that people value now and leads to the largest increase in job accessibility across scenarios. This difference is highly material at \$150 000 per relocated dwelling. The Compact City scenario also has the highest business productivity and employment participation impacts. As a result, average income which is used as a summary indicator of economic impact is estimated to be \$5000 higher per person compared to the Dispersed City scenario over the period 2021 to 2056. From an environmental perspective, the Compact City scenario has the third lowest combined GHG emissions and requires the least additional urban land take. The lower overall GHG emissions is due to significantly lower emissions from vehicles, offset by higher emissions from buildings, particularly embodied emissions from concrete and steel used to make apartments. The Compact City performs moderately on housing affordability measures, providing more affordable housing in Inner Melbourne but less overall compared to other scenarios.
- The Consolidated City has the second highest housing value, relatively high job accessibility and positive economic impacts compared to the Dispersed City scenario. The Consolidated City scenario has marginally higher GHG emissions compared to the Dispersed City, due to the increase in emissions from buildings (which is partly offset by lower emissions from vehicles). It also has lower transport externalities and land take compared to the Dispersed City.
- The Network of Cities has lower housing value, lower job accessibility and less positive economic impacts compared to the Dispersed City scenario. The Network of Cities has marginally lower GHG emissions, due to the lower emissions from vehicles, mostly offset by higher emissions from buildings. It also has lower transport externalities, but a higher land take compared to the Dispersed City
- At the other extreme, the Distributed State scenario is least aligned to current housing and business preferences. It has the lowest GHG emissions, due to the lower emissions associated with a higher share of detached housing (driven by using timber and brick rather than emissions-intensive concrete and steel), as well as lower emissions from vehicles. It also has the lowest transport externalities, associated with more travel in less densely populated areas. The land take, however, is the highest of the scenarios. It would lead to a higher share of housing being affordable although this is not necessarily a positive outcome as the lower housing cost reflects that housing is located where people have a lower willingness to pay to live.

A qualitative assessment of the scenarios is shown in table 5. Scenarios are mainly differentiated by their social and economic performance, with the Compact City and Consolidated City performing more strongly than other scenarios. While important, environmental impacts are less different across scenarios, and with alternative environmental impacts suggesting different rankings of scenarios. While infill-focused scenarios perform well on efficiency metrics, a key risk is ensuring that enough housing and business space is provided, as these scenarios have a higher risk of community opposition related to infill development.

#### 4 Summary indicators of scenarios

|                                                             |                                                     | Sc1          | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|-------------------------------------------------------------|-----------------------------------------------------|--------------|----------------------|-------------------|----------------------|----------------------|
| Indicator                                                   | Unit                                                | Compact City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
| Housing and social indicators                               |                                                     |              |                      |                   |                      |                      |
| Net value of housing                                        | \$b, present value relative to Dispersed City       | 105          | 52                   | 0                 | -55                  | -107                 |
| Of which: value of improved access to jobs                  | \$b, present value relative to Sc3                  | 100          | 47                   | 0                 | -37                  | -80                  |
| Net value of housing per relocated dwelling                 | \$000/relocated dwelling relative to Dispersed City | 152          | 75                   | 0                 | -79                  | -155                 |
| Share of all dwellings that are detached, 2056              | Per cent                                            | 53.9         | 58.0                 | 64.6              | 62.1                 | 67.1                 |
| Accessibility to jobs (car 2036)                            | Ratio to Dispersed City                             | 110          | 104                  | 100               | 101                  | 101                  |
| Accessibility to jobs (car 2056)                            | Ratio to dispersed city                             | 115          | 106                  | 100               | 100                  | 95                   |
| Accessibility to jobs (public transport 2036)               | Ratio to dispersed city                             | 110          | 104                  | 100               | 98                   | 96                   |
| Accessibility to jobs (public transport 2056)               | Ratio to dispersed city                             | 118          | 109                  | 100               | 95                   | 87                   |
| Public transport mode share (AM peak)                       | Per cent of trips                                   | 15.0         | 13.4                 | 12.1              | 12.0                 | 11.3                 |
| Share of dwellings for sale under \$750 000 (today's value) | Per cent                                            | 47.9         | 49.6                 | 55.9              | 56.0                 | 62.9                 |
| Share of dwellings available for rent under \$500 per week  | Per cent                                            | 68.5         | 68.3                 | 72.5              | 74.3                 | 78.8                 |
| Economic indicators                                         |                                                     |              |                      |                   |                      |                      |
| Business location productivity                              | \$b relative to Dispersed City                      | 30.8         | 9.0                  | 0                 | - 0.6                | -8.2                 |
| Agglomeration                                               | \$b relative to Dispersed City                      | 19.7         | 12.3                 | 0                 | -1.8                 | -15.5                |
| Employment impacts                                          | \$b relative to Dispersed City                      | 12.1         | 5.0                  | 0                 | 0.2                  | -2.6                 |
| Income                                                      | \$/person (2021 to 2056) relative to Dispersed City | 5 185        | 1 688                | 0                 | - 55                 | -1 310               |
| Environmental indicators                                    |                                                     |              |                      |                   |                      |                      |
| Building operational GHG emissions                          | Million tonnes CO2e relative to Dispersed City      | 0.7          | 0.3                  | 0                 | 0.1                  | 0.0                  |
| Building embodied GHG emissions                             | Million tonnes CO2e relative to Dispersed City      | 14.8         | 8.0                  | 0                 | 1.3                  | -1.8                 |
| Vehicle tailpipe GHG emissions                              | Million tonnes CO2e relative to Dispersed City      | -16.8        | -7.6                 | 0                 | -1.5                 | -10.8                |
| Vehicle (electric) operational energy GHG emissions         | Million tonnes CO2e relative to Dispersed City      | -0.5         | -0.2                 | 0                 | -0.0                 | 0.1                  |
| Total GHG emissions                                         | Million tonnes CO2e relative to Dispersed City      | -1.8         | 0.5                  | 0                 | -0.1                 | -12.5                |
| Environmental externalities from transport                  | \$b relative to Dispersed City                      | -0.5         | -0.3                 | 0                 | -0.8                 | -1.5                 |
| Additional urban land take                                  | Km2 relative to Dispersed City                      | -313         | -190                 | 0                 | 20                   | 241                  |

Note: Darker teal is the most positive moving to darker orange as the most negative of the five scenarios. Source: CIE.

| E          |
|------------|
| 9          |
| ē          |
| Ţ.         |
| ç.         |
| ŝ          |
| <u>Q</u> . |
| , <b>"</b> |
| ar         |
| g          |
| en         |
| ≦.         |
| õ          |
| 3          |
| ne         |
| at 1       |
| <u>a</u>   |
| ΪŤ         |
| Ę.         |
| ac         |
| វិទ        |
| 으          |
| a)         |
| Ite        |
| ŝ          |
| at         |
| Ĭ          |
| č          |
| 3          |
| a,         |
| þ          |
| ev         |
| ē          |
| ъ<br>В     |
| Ĕ          |
| ēr         |
| Ħ          |
| Sc         |
| en         |
| a          |
| ö          |
| s f        |
| ĝ          |
| ≤          |
| ç          |
| ٩.         |
| a          |

7

### 5 Qualitative assessment of impacts of the scenarios

|                                         | Sc1                                                                                                                                                            | Sc2                                                                                                                                      | Sc3                                                                                                   | Sc4                                                                                                                                              | Sc5                                                                                                                                              |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicator                               | Compact City                                                                                                                                                   | Consolidated City                                                                                                                        | Dispersed City                                                                                        | Network of Cities                                                                                                                                | Distributed State                                                                                                                                |
| Housing and social impacts              | High — best aligns to where<br>people want to live and housing<br>types (current preferences).<br>Highest accessibility of scenarios.                          | Medium/high — second closest<br>alignment to type and location of<br>housing with the highest value.                                     | Medium - third closest alignment<br>to type and location of housing<br>with the highest value.        | Medium/low — moderately poor<br>alignment with current housing<br>preferences. Would require large<br>shifts in current preferences to<br>occur. | Low — poor alignment with<br>current housing preferences.<br>Would require large shifts in<br>preferences to occur.<br>Low accessibility to jobs |
| Business and<br>productivity<br>impacts | High — business location<br>productivity, agglomeration and<br>employment likely highest in this<br>scenario                                                   | Medium/high — business location<br>productivity, agglomeration and<br>employment higher than Scenario<br>3 but not as high as Scenario 1 | Medium – similar business and productivity outcomes to Scenario 4                                     | Medium – similar business and productivity outcomes to Scenario 3                                                                                | Low – business productivity and<br>employment impacts negative<br>compared to Scenario 3                                                         |
| Environmental<br>impacts                | Second lowest GHG emissions<br>Lowest land take for urban<br>activity of scenarios                                                                             | Slightly higher GHG emissions<br>than Scenario 3<br>Second lowest land take                                                              | Second highest GHG emissions of<br>scenarios<br>Highest transport externalities<br>Moderate land take | Slightly lower GHG emissions that<br>Scenario 3<br>Slightly higher land take than<br>Scenario 3                                                  | Lowest GHG emissions, due to<br>transport and embodied<br>Highest land take                                                                      |
| Other impacts                           | High risk of insufficient housing<br>supply if community opposition to<br>infill development occurs<br>More affordable housing in inner<br>Melbourne locations | High risk of insufficient housing<br>supply if community opposition to<br>infill development occurs                                      | Greenfield housing has lower risk<br>of opposition to delivery                                        | High risk that people and<br>business preferences are not<br>aligned to the scenario                                                             | High risk that people and<br>business preferences are not<br>aligned to the scenario<br>More affordable housing in total                         |

Source: CIE.

## Glossary

8

Accessibility — the ease with which a person or a business can access particular services or inputs. This is calculated in most instances in this study as a weighted average of the time required to access different places, with places weighted by the quantity of the jobs or people.

Agglomeration — businesses locating closer together and gaining benefits from doing so

ATAP - Australian Transport Assessment and Planning

Business location productivity — how the location of a business impacts on its ability to use a given set of inputs to produce outputs

Climate zones — The National Construction Code (NCC) defines eight Australian climate zones and has different building code requirements for each climate zone.

Coastal water corporations – water corporations outside the metropolitan Melbourne area that have a service boundary located on the Victorian coastline.

Capital Cost or CAPEX — fixed, one-time expenses incurred on the purchase of land, buildings, construction, and equipment.

Decarbonisation — refers to the process of reducing or eliminating carbon dioxide emissions, particularly those resulting from human activities such as the burning of fossil fuels.

Demand saturation — refers to a situation where the market or consumers have reached a point where they are no longer willing or able to purchase more of a particular product or service. It means that the demand for that product or service has reached its maximum limit, and further attempts to increase sales may be challenging or result in diminishing returns.

Embodied emissions — GHG emissions related to the materials and construction processes for buildings.

GHG emissions — greenhouse gas emissions

Greenfield — development of land that is not currently urban for urban purposes. This can include land in Melbourne's New Growth Areas and in other areas.

GSP — Gross State Product

GWH — Giga Watt Hours

Infill — refers to existing urban areas that are not undeveloped greenfield sites. It includes neighbourhoods, activity centres and transport corridors in Melbourne, as well

as urban renewal areas. This can be applied to Melbourne and to regional Victorian cities, such as Geelong, Ballarat and Bendigo etc., where infill development is occurring.

Inland water corporations – water corporations outside the metropolitan Melbourne area that *do not* have a service boundary located on the Victorian coastline.

Local Infrastructure — streetscape and reticulation of services within a development area to each development site

Metropolitan Centre (also called Metropolitan Activity Centres) — higher-order centres intended to provide a diverse range of jobs, activities and housing for regional catchments that are well served by public transport. These centres will play a major service delivery role, including government, health, justice and education services, as well as retail and commercial opportunities.

Occupancy rates — number of people living in a dwelling.

Other tertiary education — for example TAFE

Operating cost or OPEX — cost related to the maintenance of buildings or land. This excludes cost like teaching staff.

Opportunity cost of land — refers to the potential benefits or opportunities that are foregone or sacrificed when a particular piece of land is used for a specific purpose, instead of being used for an alternative use that could have provided greater value or returns. It represents the value of the next best alternative forgone when choosing a particular land use.

Peri-urban areas — transitional zones located on the outskirts of urban centres, characterised by a mix of urban and rural features.

Permanent capacity (relating to schools) — capacity in permanent school building buildings (i.e., bricks and mortar)

Relocatable capacity (relating to schools) — capacity in relocatable buildings (i.e., portables)

Relocated dwellings — dwellings that are in a different place in each scenario, equal to 0.7 million dwellings from 2021 to 2056. Across all scenarios Victoria grows by 1.8 million new dwellings. 1.1 million of these new dwellings are constructed in the same location across all scenarios, and 0.7 million (relocated dwellings) are in different locations.

SEIFA — Socio-Economic Indexes for Areas

Tailpipe emissions — GHG emissions from internal combustion engines in cars and other vehicles using diesel and petrol

Total cost — Sum of all capital cost and the cumulative operating cost over time.

Units of measurement — GW (Gigawatt), MW (Megawatt), kW (Kilowatt), TJ (Terajoules), MJ (Megajoules), kJ (Kilojoules), km2 (square kilometres), ha (hectares), sqm (square metres), ML (megalitre), kL (kilolitre)

UGB — urban growth boundary

VKT — Vehicle Kilometres Travelled

Well-to-tank emissions — GHG emissions related to the production of a vehicle and production of fuel used in the vehicle, such as electricity production for electric vehicles.

WTP — Willingness To Pay

# 1 This project

Infrastructure Victoria has developed five urban development scenarios to capture a variety of outcomes for how people, dwellings and jobs growth occurs across Victoria. These are documented in detail in SGS 2022, Urban Development Scenarios and set out in chapter 2. The CIE has been tasked with assessing the economic, social and environmental impacts of these scenarios.

Alternative urban development scenarios can have a wide range of possible impacts on Victorians. Not all impacts have been measured in this assessment. The assessment has focused on measures based on the following:

- impacts that are expected to be the most significant to people's wellbeing
- impacts that are not overlapping with other impacts that is, they measure a distinct aspect of the performance of a scenario
- impacts that are expected to be intrinsically different across urban development scenarios, as opposed to being influenced largely by other factors, and
- impacts that are measurable.

A summary of the indicators measured and other indicators not measured is shown in table 1.1.

| Category      | Measured                                                                                                                                                                               | Not measured but discussed                                                                              | Not considered                                                                                                 |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Environmental | GHG emissions from transport<br>and buildings<br>Land requirements<br>Transport externalities (air and<br>noise pollution)                                                             | Development of sensitive land<br>Energy consumption<br>Water consumption<br>Air quality (non-transport) | Water quality<br>Soil degradation<br>Waste generated<br>Noise pollution (non-<br>transport)                    |
| Social        | Housing type and suitability<br>(alignment to housing<br>preferences)<br>Access to jobs<br>Access to services<br>Spatial distribution of housing<br>affordability<br>Transport metrics | Dwelling types                                                                                          | Housing suitability<br>Household stress<br>Cultural/recreational<br>participation<br>Youth engagement<br>Crime |
| Economic      | Alignment with current<br>business preferences<br>Labour force<br>participation/employment<br>Agglomeration<br>Effective job density<br>Individual/household income                    |                                                                                                         | GSP<br>Agricultural productivity<br>Human capital                                                              |

**1.1** Summary of impacts measured for urban growth scenarios

| Category | Measured                        | Not measured but discussed | Not considered     |
|----------|---------------------------------|----------------------------|--------------------|
| Costs    | Most infrastructure costs, with | Health                     | Ports              |
|          | exceptions shown to the right   |                            | Police             |
|          |                                 |                            | Emergency services |
|          |                                 |                            | Justice            |
|          |                                 |                            | Social services    |

Note: Measured are highlighted in teal, not measured but discussed in grey and not considered in pink. Source: CIE.

This report continues as follows:

- Part I details the urban development scenarios
- Part II sets out infrastructure costs estimated for each scenario. It covers:
  - the method for estimating infrastructure costs
  - the types of costs assessed
  - the estimated infrastructure costs
  - details for measurement of the costs for each sector are shown in technical appendices
- Part III sets out the economic, social and environmental impacts of scenarios. It covers:
  - housing and social impacts, covering indicators such as alignment of scenarios to people's preferences about where and how they live, and accessibility
  - economic impacts, which are impacts on businesses and employment that will result in a change to income
  - environmental impacts, particularly focusing on land take and GHG emissions
  - equity impacts, focused on the distribution of outcomes spatially and housing affordability
  - the robustness and risks of different spatial scenarios.
- Part IV is technical appendices for all the different areas.

## PART I

Urban development scenarios



# 2 Urban development scenarios

Infrastructure Victoria has developed five urban development scenarios to capture a variety of outcomes for how people, dwellings and jobs growth occurs across Victoria. These are documented in detail in SGS 2022, Urban Development Scenarios. The five scenarios are set out in table 2.1, alongside some of the key implications for population and employment distributions.

| Scenario |              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Compact City | High population<br>growth<br>Moderate<br>population growth<br>Incremental<br>population growth<br>Incremental<br>population growth<br>High employment<br>growth<br>Incremental<br>employment growth<br>Incremental<br>employment growth                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |              | The Compact City scenario reflects more concentrated urban development in the inner city<br>of Melbourne and housing development in places of high transport accessibility. This<br>structure supports sustainable city outcomes adapting to climate change impacts through<br>policy and behavioural change.<br>There is a consolidation of both residential and employment growth, primarily in inner<br>Melbourne and middle Melbourne along train corridors. This means people live closer to<br>places of employment and have greater public transport accessibility, reducing car<br>dependency. Government also increases investment in accessible affordable housing. |
|          |              | regional Victoria, particularly areas at risk of adverse climate change impacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |              | The central city and inner urban renewal precincts experience the largest population and employment growth, reaching their aspirational residential densities while also continuing to attract a large net inflow of workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |              | Key Focus Areas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |              | Focuses most heavily on inner Melbourne, with much higher employment and population growth levels than other scenarios. Outer Melbourne, Melbourne new growth areas and regional Victoria receive the lowest shares of growth under this scenario.                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### 2.1 The five urban development scenarios



16

Scenario Description Places substantial levels of growth in outer Melbourne and the new growth areas, drawing growth from inner Melbourne and middle Melbourne. There is also a shift towards regional centres and rural areas focused around peri-urban Melbourne compared to Scenario 1 and 2. High population growth High employment arowth Low employment growth Low population growth  $\bigcirc$  $\cap$  $\bigcirc$ Trend growth  $\cap$ Trend growth C 0 0 0 0 0 0 The Network of Cities scenario projects a future where housing affordability in metropolitan Melbourne combined with continuing remote working leads to the development of regional **Network of** cities as people choose to live regionally. Policy leads the development of these cities as 4 Cities higher density areas and they become consolidated centres for living regionally. These regional cities grow and densify, attracting both population serving and higher order employment. Increased agricultural employment across the regions is also served by workers from regional cities. At the expense of metropolitan Melbourne, a large portion of Victoria's growth is accommodated in Geelong, Ballarat, and Bendigo. Traralgon also experiences additional population growth to a moderate extent and smaller regional cities attract additional residents and associated population serving employment. Key Focus Areas: Allocates more growth to regional cities, which under this scenario would receive several times more growth than under some other scenarios. Regional centres and rural areas also receive moderately high growth rates, but less than under Scenario 3 or Scenario 4. High population growth High employment growth  $\bigcirc$  $\bigcirc$ Moderate Moderate  $\bigcirc$  $\cap$ population growth employment growth Incremental employment growth Incremental population growth  $\bigcirc$  $\bigcirc$ 0 0 0  $\mathcal{O}$ 0 In the Distributed State scenario population growth decentralises from existing settlements Distributed 5 with housing affordability in established areas leading people to settle regionally. This State growth in regional areas is unmanaged and results in sprawling low density development across the state. Residential growth slows within metropolitan Melbourne as development becomes more dispersed from existing metropolitan and regional centres across the state, initially in major regional cities and then in low density corridors which stretch from Melbourne to regional centres, and between regional centres. Agricultural employment growth declines as farmland is used for urban sprawl. At the same time, companies return manufacturing and fabrication to Australia with industrial employment slowing the decline of manufacturing at the expense of business and government services. Key Focus Areas:

| Scenario | Description                                                                                                                                                                                                                                             |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Places very high levels of growth in the regional centres and rural areas, reflecting employment and population growth spread broadly across regional Victoria. Regional cities also have very high growth rates, although lower than under Scenario 4. |

Source: SGS 2022, Urban Development Scenarios, prepared for Infrastructure Victoria.

## **Population growth**

Under each population distribution scenario, the overall population growth in Victoria by 2056 remains the same. Total population is projected to witness a substantial growth from 6.7 million in 2021 to 10.7 million in 2056, representing an additional 4 million individuals. However, the distribution of this growth varies significantly based on spatial location (chart 2.2):

- Overall, in the Compact City, Consolidated City, and Dispersed City scenarios, more than three-quarters of the additional growth is allocated to metropolitan Melbourne. This share decreases to 64 per cent and 52 per cent in the Network of Cities and Distributed State scenarios, respectively.
- In the Compact City scenario, the majority of additional growth occurs in inner Melbourne (29 per cent) and middle Melbourne (26 per cent), followed by the Melbourne new growth areas (19 per cent) and outer Melbourne (12 per cent). Regional Victoria accounts for only 14 per cent of the growth.
- The Consolidated City scenario shows similar additional growth to the Compact City scenario in middle and outer Melbourne, as well as Regional Victoria. However, there is more growth in the Melbourne new growth areas (26 per cent) and less in inner Melbourne.
- The Dispersed City scenario allocates the highest proportion of additional growth to the Melbourne new growth areas (38 per cent), outer Melbourne (19 per cent), and Regional Victoria (24 per cent). However, there is significantly less growth in inner and middle Melbourne.
- The Network of Cities scenario primarily distributes additional growth to Regional Victoria (36 per cent), the Melbourne new growth areas (25 per cent) and outer Melbourne (14 per cent). The remaining growth is allocated to inner and middle Melbourne.
- Finally, the Distributed State scenario sees almost half of the growth occurring in Regional Victoria, mainly in regional towns. The Melbourne new growth areas account for 21 per cent of the growth, while the shares for inner Melbourne (8 per cent) and middle Melbourne (11 per cent) are the lowest among all scenarios.



#### 2.2 Additional population, by scenario and functional urban area (2021 to 2056)

Data source: CIE, IV Population Growth forecast by scenario.

## Dwelling growth

Dwelling growth follows a similar trend to population distribution. The number of dwellings is anticipated to experience a notable increase from 2.8 million in 2021 to 4.6 million in 2056, reflecting a substantial growth of 1.8 million dwellings. Of these 1.8 million additional dwellings, 1.1 million are in the same SA2s across the scenarios, and 0.7 million are relocated.

The change in average occupancy rates, which represent the number of people per dwelling, is relatively consistent across scenarios for functional urban areas from 2021 to 2056. With the exception of inner and middle Melbourne, occupancy rates generally experience a slight decrease, with the largest decline observed in outer Melbourne and the Melbourne new growth areas.

However, there are significant variations in dwelling typology among scenarios (chart 2.3). In general, the choice of dwelling types aligns with the projected population growth in urban areas. As higher-density areas are expected to accommodate more population growth, there is a greater emphasis on constructing apartments and a reduced focus on detached houses.

For instance, in the Compact City scenario, the number of new detached houses (890 000) is nearly equal to the number of apartments (916 000) being constructed. In contrast, the Distributed State scenario exhibits a significant disparity, with over four times as many houses (>1.4 million) compared to apartments. Moreover, the relative share of new detached houses in the Melbourne new growth areas (98 per cent) and the rest of Victoria (ranging from 90 to 95 per cent) remains relatively constant across all scenarios.

In summary, dwelling typology aligns with the anticipated population growth in different areas and scenarios. Higher-density areas tend to see a greater proportion of apartments,

while detached houses remain prevalent in the Melbourne new growth areas and the rest of Victoria.





Data source: CIE, IV Dwelling Growth forecast by scenario.

## Employment growth

Employment growth aligns with the population distribution trends. Employment figures are projected to undergo significant growth, with an increase from 3.5 million in 2021 to 5.5 million in 2056, representing a substantial rise of over 2 million jobs.

Among the different scenarios, the Melbourne new growth areas exhibit the most relative growth in employment (chart 2.4). In 2021, the ratio of population to employment varies across areas, with the Melbourne new growth areas exhibiting a high ratio of 5.2, inner Melbourne showing a lower ratio of 0.9, and other areas generally falling around 2.

The relationship between population distribution and employment growth exhibits consistency across the functional urban areas in all scenarios. Inner and middle Melbourne continue to serve as the primary employment hubs, attracting a significant

workforce from population and non-population driven employment. Employment growth in the Melbourne new growth areas is primarily driven by population serving employment to accommodate the population's increasing demand for essential services such as retail, hospitality, schools, and medical facilities.



2.4 Additional employment, by scenario and functional urban area (2021 to 2056)

In terms of employment by industry, the majority of jobs are within the service sector<sup>2</sup> (>69 per cent) in 2021, while this share is increasing to approximately 75 per cent across all scenarios by 2056.

Although there are slight variations in additional employment by industry across the scenarios, the differences are minimal (chart 2.5):

- The Compact City and Consolidated City scenarios exhibit identical patterns of additional employment by industry sector.
- The Dispersed City scenario allocates more jobs to the traditional industry<sup>3</sup> and leisure sectors, while reducing the allocation to the retail and hospitality sector.
- The Networks of Cities scenario sees an increase in employment within the agriculture sector and a decrease across all service sectors; and
- The Distributed State scenario has fewer additional jobs in agriculture and the Business & Government Services<sup>4</sup> sectors but sees an increase in employment within the traditional industry.

<sup>4</sup> The Business & Government Services sector is a subset of the broader service sector. It encompasses activities related to professional services, administrative support, and government

Data source: CIE, IV Employment Growth forecast by scenario.

<sup>&</sup>lt;sup>2</sup> This includes Business & Government Services, Hospitals, Leisure, Medical, Social & Community services, Retail Hospitality School Education, and Tertiary Education.

<sup>&</sup>lt;sup>3</sup> This includes the ANZSIC 1-digit categories: Mining; Manufacturing; Electricity, Gas, Water and Waste Services; Wholesale Trade; Transport; Postal and Warehousing; Rental and Hiring Services (except Real Estate); Repair and Maintenance



#### 2.5 Additional employment, by scenario and industry sector (2056)

Note: More details and the industry concordance are provided in SGS 2022, Urban Development Scenarios, Part A: Land Use Scenarios prepared for Infrastructure Victoria, Appendix C.

Data source: CIE, IV Employment Growth forecast by scenario.

functions. Examples of industries within the Business & Government Services sector include consulting firms; legal, accounting, and advertising services; and government agencies. The service sector and the Business & Government Services sector share similarities as they both involve providing services, but the latter focuses specifically on professional services and government functions, distinguishing it from the broader service sector.
PART II

Infrastructure costs

# *3 Methodological steps for measuring infrastructure costs*

# General approach

The general approach to understanding infrastructure costs is shown in chart 3.1. The level of detail and specific methodology for doing this will differ for each sector.

#### Estimate future additional demand for infrastructure Scenario **Existing infrastructure** services Develop assumptions and Develop assumptions and models around existing models around future demand capacity Compare demand to existing infrastructure to determine if there Is capacity Existing capacity can meet **Existing capacity cannot** demand meet demand **Trigger capex and apply** Zero additional benchmark costs by region infrastructure type for capex/opex/land

#### 3.1 General approach for infrastructure costs

Data source: CIE.

Infrastructure to support development can be classified in different ways depending on what the works involve.

- 1 On-site works this comprises local infrastructure within the development site. For example, water pipes within a new development area. This infrastructure is typically provided and paid for by the developer. This type of cost refers to local infrastructure.
- 2 Extension or lead-in works this comprises infrastructure to connect existing networks to the development area. It can comprise:
  - a) network extensions only to serve the new development; and

- 26
  - b) Network extensions that would serve multiple areas, which could be termed 'trunk' network extensions
- 3 Augmentation works this is where the capacity of existing infrastructure is required to be upgraded to meet demand generated by the new development. This could include substation upgrades, additional school and community facility capacity and 'headwork' augmentation, such as additional capacity in dams and sewerage treatment plants.

We further assume that:

- infrastructure costs will cover capital and operating expenditure
- infrastructure costs will cover land cost (where applicable)
- infrastructure costs include the sectors set out chapter 3, although not all of these will have varying costs across scenarios
- the financial cost of land is the same as the opportunity cost of land, and land used for infrastructure will be taken from some other use.

### Capacity and service standards

When estimating the cost of infrastructure provision in the economic analysis it is important to consider the current existing capacity and service standards and the associated trade-offs:

- Current infrastructure capacity is the extent to which it can accommodate future growth. For example, existing school facilities need to be evaluated to determine if they can accommodate the projected increase in student numbers.
- Service standards refers to consistent levels of quality in the provision of services and ensuring that the infrastructure can accommodate the needs of the community. For example, a lower average class size in schools requires more classrooms to be built, representing a higher infrastructure service standard.

There is a trade-off between existing capacity and service standards. Lowering of a service standard allows existing infrastructure to support growth without modifications. For example, additional demand could be accommodated within existing school facilities through having larger class sizes. In this case the cost is the potential loss of value of smaller class sizes.

Our modelling approach has maintained the current service standard across all scenarios. This is because it is difficult to place a value on changing service levels. Maintaining the current service standard across scenarios means that differences across Victoria in service standards remain in our scenarios in the future. For example, current service standards in growth areas are different to inner city areas and we assume these differences will remain in the future.

# Infrastructure areas assessed

The areas of infrastructure requirements to measure for comparing urban development scenarios have been assessed against the following:

- infrastructure that is more material to people's wellbeing
- infrastructure requirements that are expected to be intrinsically different across urban development scenarios, as opposed to being influenced largely by other factors, and
- infrastructure requirements that are measurable.

A summary of our assessment of impacts against these criteria is shown in table 3.2. The assessments are explained in detail in the sections below.

The costs that have not been quantified include:

- Infrastructure that serves very large catchments and, therefore, does not tend to change with scenarios — health, justice, waste and ports are examples of this, although health may vary with the regional scenarios.
- Infrastructure that serves very small catchments and tends to be highly incremental rather than having the standard infrastructure characteristic of high fixed costs police and emergency services tend to fit into this category.

| Quantified                                                                                              | Qualitatively                         |
|---------------------------------------------------------------------------------------------------------|---------------------------------------|
| <ul> <li>Transport<sup>5</sup></li> </ul>                                                               | - Health                              |
| <ul> <li>Utilities (including electricity, gas, water, and</li> </ul>                                   | Ports                                 |
| wastewater)                                                                                             | Police                                |
| Education                                                                                               | Emergency services                    |
| Open Space                                                                                              | <ul> <li>Justice</li> </ul>           |
| Community facilities                                                                                    | <ul> <li>Social services</li> </ul>   |
| <ul> <li>Local Infrastructure in development areas (utility<br/>connection, and local roads)</li> </ul> | <ul> <li>Telecommunication</li> </ul> |
| <ul> <li>Conversion of existing streetscapes in inner<br/>Melbourne development precincts</li> </ul>    |                                       |
|                                                                                                         |                                       |

#### 3.2 Summary of costs measured

Source: CIE.

Note that cost related to social housing are not measured, as these will largely depend on the social housing strategy pursued rather than the spatial scenario.

<sup>5</sup> Assessed by Arup.

# 4 Estimated infrastructure costs across scenarios

- Future urban development requires substantial additional infrastructure. This includes utilities, transport, local infrastructure and community infrastructure.
- Costs vary by development scenario due to differences in existing infrastructure capacity, the shares of greenfield and infill development, as well as differences in regional population density, dwelling typology and employment composition.
- Total estimated additional infrastructure costs to meet the higher population in 2056 are above \$776 billion for all scenarios.
- Transport and local infrastructure have the most substantial infrastructure cost, followed by electricity and education. Other utilities (e.g., gas, water and wastewater) and community infrastructure (community facilities and open space) only account for a smaller proportion of total cost.
- Overall, the Compact City and Consolidated City scenarios tend to exhibit lower costs in the transport and utilities' sectors. However, it is worth noting that community infrastructure costs are generally higher in denser areas due to higher land cost.
- Costs are highest for scenarios with high shares of greenfield development, such as the Dispersed City scenario (\$817 billion). The Consolidated City and Network of Cities scenarios have similar costs at \$800 and \$807 billion. The Compact City scenario has the lowest cost across all scenarios (\$776 billion).
- For each new dwelling that is different across scenarios we estimate that the Compact City scenario has a lower cost of \$59 000 per new relocated dwelling compared to the Dispersed City scenario. Similarly, the Consolidated City and Distributed State scenario have a lower cost of \$29 000 and \$26 000 per dwelling compared to the Dispersed City scenario, respectively.
- For many of these indicators it is most useful to compare across scenarios. For comparison we use the Dispersed City scenario as it represents a continuation of recent trends.

Table 4.1 shows the total infrastructure cost, i.e., capital, operating and land cost, across scenarios, while table 4.2 summarises only the cost which differ across scenarios. This excludes all cost that do not differ by scenario, for example, transport projects that would have been delivered across every scenario or electricity generation costs which are the same across each scenario.

| Sector                                   | Sc1          | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|------------------------------------------|--------------|----------------------|----------------|----------------------|----------------------|
|                                          | Compact City | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                                          | \$b, real    | \$b, real            | \$b, real      | \$b, real            | \$b, real            |
| Local infrastructure                     | 135          | 148                  | 160            | 158                  | 163                  |
| Education                                | 55           | 44                   | 44             | 42                   | 37                   |
| Open space                               | 26           | 17                   | 14             | 13                   | 11                   |
| Community facilities                     | 24           | 21                   | 18             | 18                   | 14                   |
| Electricity                              | 82           | 84                   | 91             | 91                   | 88                   |
| Gas                                      | 13           | 13                   | 13             | 13                   | 13                   |
| Water and Wastewater                     | 35           | 38                   | 40             | 44                   | 46                   |
| Transport                                | 405          | 435                  | 438            | 429                  | 426                  |
| Total                                    | 776          | 800                  | 817            | 807                  | 797                  |
| Difference to<br>Dispersed City scenario | -41          | -18                  | 0              | -10                  | -20                  |

# 4.1 Infrastructure impacts across scenarios to 2056 – absolute total cost (\$ billions)

Note: Figures are denoted in real 2022/23 dollars. Cost includes cumulative operating cost until 2056. Figures have been rounded to the nearest billion and may not add up.

Data source: CIE.

| Sector                                   | Sc1          | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|------------------------------------------|--------------|----------------------|----------------|----------------------|----------------------|
|                                          | Compact City | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                                          | \$b, real    | \$b, real            | \$b, real      | \$b, real            | \$b, real            |
| Local infrastructure                     | 42           | 55                   | 68             | 65                   | 70                   |
| Education                                | 34           | 23                   | 23             | 20                   | 15                   |
| Open space                               | 18           | 9                    | 6              | 4                    | 3                    |
| Community facilities                     | 13           | 9                    | 6              | 7                    | 2                    |
| Electricity                              | 5            | 7                    | 13             | 13                   | 11                   |
| Gas                                      | 0            | 0                    | 0              | 0                    | 0                    |
| Water and Wastewater                     | 9            | 11                   | 13             | 17                   | 20                   |
| Transport                                | 28           | 57                   | 61             | 52                   | 48                   |
| Total                                    | 149          | 172                  | 190            | 179                  | 169                  |
| Difference to<br>Dispersed City scenario | -41          | -18                  | 0              | -10                  | -20                  |

# 4.2 Infrastructure impacts across scenarios to 2056 – total cost different across scenarios (\$ billions)

Note: Figures are denoted in real 2022/23 dollars. Cost includes cumulative operating cost until 2056. Figures have been rounded to the nearest billion and may not add up.

Data source: CIE.

Total estimated additional infrastructure costs include the additional capital, cumulative operating, and land cost associated with each scenario until 2036 and 2056. These are shown in chart 4.2. Total capital cost includes capital and land cost and is shown in chart 4.3.



4.3 Infrastructure impacts across scenarios to 2056 – total cost (\$ billions)

Note: Figures are denoted in real 2022/23 dollars. Cost includes cumulative operating cost until 2056. Data source: CIE.



#### 4.4 Infrastructure impacts across scenarios to 2056 – only capital cost (\$ billions)

Note: Excludes operating cost. Figures are denoted in real 2022/23 dollars. Data source: CIE.

## Cost per new dwelling

The additional infrastructure costs required to service the growth ranges across the scenarios from \$429,000 to \$452,000 per new dwelling across scenarios (table 4.5). Transport infrastructure represents more than half of these costs, followed by local infrastructure and electricity costs. Electricity costs are notably higher compared to other utility expenses, primarily due to the transformation occurring in electricity generation. Allocating all costs to growth will overstate impacts in some cases, such as electricity, where a part of the costs is related to servicing all customers not just growth.

| 2 | 4 |
|---|---|
| J | Т |

| Sector                                   | Sc1           | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|------------------------------------------|---------------|----------------------|----------------|----------------------|----------------------|
|                                          | Compact City  | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                                          | \$ '000, real | \$ '000, real        | \$ '000, real  | \$ '000, real        | \$ '000, real        |
| Local infrastructure                     | 74            | 82                   | 89             | 87                   | 90                   |
| Education                                | 31            | 24                   | 24             | 23                   | 20                   |
| Open space                               | 14            | 9                    | 8              | 7                    | 6                    |
| Community facilities                     | 14            | 11                   | 10             | 10                   | 8                    |
| Electricity                              | 45            | 47                   | 50             | 50                   | 49                   |
| Gas                                      | 7             | 7                    | 7              | 7                    | 7                    |
| Water and Wastewater                     | 20            | 21                   | 22             | 24                   | 26                   |
| Transport                                | 224           | 240                  | 242            | 237                  | 235                  |
| Total                                    | 429           | 442                  | 452            | 446                  | 441                  |
| Difference to<br>Dispersed City scenario | -23           | -10                  | 0              | -6                   | -11                  |

#### 4.5 Cost per new dwelling across scenarios to 2056 – absolute total cost (\$ '000)

Note: Figures are denoted in real 2022/23 dollars. Cost includes cumulative operating cost until 2056. Note: Figures are denoted in real 2022/23 dollars. Cost includes cumulative operating cost until 2056. Figures may not add up due to rounding.

#### Data source: CIE.

Table 4.6 shows additional infrastructure costs that differ by scenarios required to service the growth ranges across the scenarios from \$82,000 to \$105,000 per new dwelling across scenarios. Excluding costs that are the same across all scenarios, such as transport projects which are delivered in every scenario, shows that the share of transport cost falls substantially compared to the table above and account for approximately one third of the cost of new dwellings.

# 4.6 Cost per new dwelling across scenarios to 2056 – total cost different across scenarios (\$ '000)

| Sector                                   | Sc1           | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|------------------------------------------|---------------|----------------------|----------------|----------------------|----------------------|
|                                          | Compact City  | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                                          | \$ '000, real | \$ '000, real        | \$ '000, real  | \$ '000, real        | \$ '000, real        |
| Local infrastructure                     | 23            | 31                   | 38             | 36                   | 39                   |
| Education                                | 19            | 12                   | 12             | 11                   | 8                    |
| Open space                               | 10            | 5                    | 3              | 2                    | 1                    |
| Community facilities                     | 7             | 5                    | 3              | 4                    | 1                    |
| Electricity                              | 3             | 4                    | 7              | 7                    | 6                    |
| Gas                                      | 0             | 0                    | 0              | 0                    | 0                    |
| Water and Wastewater                     | 5             | 6                    | 7              | 10                   | 11                   |
| Transport                                | 16            | 32                   | 34             | 29                   | 27                   |
| Total                                    | 82            | 95                   | 105            | 99                   | 94                   |
| Difference to<br>Dispersed City scenario | -23           | -10                  | 0              | -6                   | -11                  |

Note: Figures are denoted in real 2022/23 dollars. Cost includes cumulative operating cost until 2056. Figures may not add up due to rounding. Data source: CIE.

There are two main reasons for the modest per dwelling cost differentials between scenarios:

- Firstly, the Compact City and Consolidated City scenarios tend to exhibit lower costs in the transport and utilities' sectors. However, higher capital and land costs in established areas contribute to higher community and education infrastructure costs in denser regions. The lower transport/utility costs for these two scenarios are offset by the higher community/education infrastructure costs, resulting in a lower overall cost differential.
- Secondly, 1.1 million of the 1.8 million new dwellings are constructed in the same location across all scenarios. This means that the cost differences between scenarios is driven by only 0.7 million relocated dwellings.

If we instead examine cost differences per relocated dwelling<sup>6</sup>, the differences between scenarios are larger. We estimate that the Compact City scenario has a lower cost of \$59 000 per new relocated dwelling compared to the Dispersed City scenario (table 4.7). Similarly, the Consolidated City and Distributed State scenario have a lower cost of \$29 000 and \$26 000 per dwelling compared to the Dispersed City scenario, respectively.

This means that the Compact City and Consolidated City scenarios offer the largest cost advantages when it comes to infrastructure cost per relocated dwelling compared to the Dispersed City scenario.

| Sector               | Sc1           | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|----------------------|---------------|----------------------|----------------|----------------------|----------------------|
|                      | Compact City  | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                      | \$ '000, real | \$ '000, real        | \$ '000, real  | \$ '000, real        | \$ '000, real        |
| Local infrastructure | -37           | -18                  | 0              | -4                   | 3                    |
| Education            | 16            | 0                    | 0              | -3                   | -10                  |
| Open space           | 18            | 4                    | 0              | -2                   | -5                   |
| Community facilities | 10            | 4                    | 0              | 1                    | -6                   |
| Electricity          | -12           | -9                   | 0              | 0                    | -3                   |
| Gas                  | 0             | 0                    | 0              | 0                    | 0                    |
| Water and Wastewater | -6            | -3                   | 0              | 6                    | 10                   |
| Transport            | -47           | -5                   | 0              | -13                  | -18                  |
| Total                | -59           | -26                  | 0              | -15                  | -29                  |

#### 4.7 Total cost per dwelling different across scenarios to 2056 – compared to Sc3

Note: Figures are denoted in real 2022/23 dollars. Cost includes cumulative operating cost until 2056. Figures may not add up due to rounding.

Data source: CIE.

<sup>&</sup>lt;sup>6</sup> The relocated dwellings are those above the minimum across scenarios for each SA2.

### Distributional impact

We have assessed on a high level the distributional impact on various stakeholders involved in funding infrastructure (table 4.8).

#### 4.8 Funding source assumptions

|                      | Victorian<br>Government | Local<br>Government | Non-government<br>sector (education) | Developer | User charges |
|----------------------|-------------------------|---------------------|--------------------------------------|-----------|--------------|
| Local infrastructure |                         |                     |                                      | CAPEX     | OPEX         |
| Education            |                         |                     |                                      |           |              |
| - Kindergarten       | CAPEX & OPEX            |                     |                                      |           |              |
| - Schools            | CAPEX & OPEX            |                     | CAPEX & OPEX                         |           |              |
| Open space           | CAPEX                   | CAPEX & OPEX        |                                      | CAPEX     |              |
| Community facilities | CAPEX                   | CAPEX & OPEX        |                                      | CAPEX     |              |
| Utilities            |                         |                     |                                      |           | CAPEX & OPEX |
| Transport            | CAPEX & OPEX            |                     |                                      |           |              |

Note: We note that Victorian Government and Local Government do contribute to some local infrastructure costs when there are no development contribution plans in place or the existing development contribution plans share the cost between government and the developer. For the purpose of this analysis, a simplifying assumption was taken. Source: CIE

Over the past two decades, there has been a notable upward trend in infrastructure investment by the Victorian Government (chart 4.9). From the late 2000s until 2015/16, investments remained relatively stable, averaging around \$4.9 billion per year in nominal dollars. However, since 2016/17, there has been a consistent increase in infrastructure expenditure, with a projected peak of \$22.5 billion for the 2022/23 financial year. Looking ahead, infrastructure investment is expected to maintain an average of \$19.6 billion annually over the budget and forward estimates period.



#### 4.9 Victorian Government infrastructure investment

Data source: Victorian Government (2023), Victorian Budget 2023/24 State Capital Program Budget Paper No. 4, https://s3.ap-southeast-2.amazonaws.com/budgetfiles202324.budget.vic.gov.au/2023-24+State+Budget+-+State+Capital+Program.pdf, p.2

Overall, the majority of the future infrastructure costs are borne by the Victorian Government, developers and users of services, with the Australian Government also sharing the burden (table 4.10).

We estimate that the Victorian Government is expected to bear infrastructure capital costs ranging from \$371 billion (Compact City scenario) to \$393 billion (Dispersed City and Consolidated City scenario), with an average annual cost of approximately \$11 billion. Slight variations exist depending on the scenario (see tables 4.10 and 4.11).

The Victorian Government budget forecast for 2018 to 2026 allocates over 75 per cent of the infrastructure investments to transport and education. However, it is important to note that this costing analysis does not include investments in significant health facilities, justice or police projects, and other sectors. While the projected cost is lower than the budget forecast, it is crucial to recognise that this analysis does not capture the full extent of investments in those specific areas.

|                                   | Sc1             | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|-----------------------------------|-----------------|----------------------|-------------------|----------------------|----------------------|
|                                   | Compact<br>City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                   | \$b             | \$b                  | \$b               | \$b                  | \$b                  |
| Victorian Government              | 371             | 393                  | 393               | 384                  | 378                  |
| Local Government                  | 29              | 21                   | 17                | 17                   | 13                   |
| Non-government sector (education) | 15              | 10                   | 10                | 10                   | 8                    |

#### 4.10 Distributional capital costs by stakeholder to 2056 (\$ billions)

|                                       | Sc1             | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|---------------------------------------|-----------------|----------------------|-------------------|----------------------|----------------------|
|                                       | Compact<br>City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                       | \$b             | \$b                  | \$b               | \$b                  | \$b                  |
| Developer                             | 106             | 114                  | 122               | 120                  | 123                  |
| User charges                          | 105             | 112                  | 122               | 123                  | 123                  |
| Total                                 | 627             | 650                  | 665               | 654                  | 645                  |
| Difference to Dispersed City scenario | -38             | -14                  | 0                 | -10                  | -20                  |

Note: Please refer to the appendices on how distributional costs have been calculated by infrastructure sector. Figures are denoted in real 2022/23 dollars. Capital cost include land cost. Figures have been rounded to the nearest billion and may not add up. Source: CIE.

| 4.11 | Distributional capital costs by stakeholder per annum (\$ billions) |
|------|---------------------------------------------------------------------|
|      |                                                                     |

|                                       | Sc1             | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|---------------------------------------|-----------------|----------------------|-------------------|----------------------|----------------------|
|                                       | Compact<br>City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                       | \$b/annum       | \$b/annum            | \$b/annum         | \$b/annum            | \$b/annum            |
| Victorian Government                  | 10.6            | 11.2                 | 11.2              | 11.0                 | 10.8                 |
| Local Government                      | 0.8             | 0.6                  | 0.5               | 0.5                  | 0.4                  |
| Non-government sector (education)     | 0.4             | 0.3                  | 0.3               | 0.3                  | 0.2                  |
| Developer                             | 3.0             | 3.3                  | 3.5               | 3.4                  | 3.5                  |
| User charges                          | 3.0             | 3.2                  | 3.5               | 3.5                  | 3.5                  |
| Total                                 | 17.9            | 18.6                 | 19.0              | 18.7                 | 18.4                 |
| Difference to Dispersed City scenario | -1.1            | -0.4                 | 0.0               | -0.3                 | -0.6                 |

Note: Please refer to the appendices on how distributional costs have been calculated by infrastructure sector. Figures are denoted in real 2022/23 dollars. Capital cost include land cost. Figures have been rounded to the nearest billion and may not add up. *Source:* CIE.

### Sensitivity analysis in respect to land cost in established areas

For the purpose of this costing analysis, we have included land cost associated with the delivery of social infrastructure (i.e., education, open space, and community facilities) across both greenfield and infill development areas.

In this section we present cost estimates for a scenario that assumes established area land acquisition was not required for social infrastructure, based on the assumption existing government land can be repurposed. Since, repurposing existing government land still has some sort of opportunity cost, as the land could be converted to other uses or has value in its existing use, this assumption has not been used to underpin the central case estimates. This is an upside opportunity if better use can be made from Victorian Government land.

Table 4.12 shows the total infrastructure cost impact across scenario excluding land cost for established areas. This impacts only the education, open space, and community facility sectors:

- 36
- Overall cost decrease by \$4 billion to \$32 billion across scenarios, with the largest cost reduction for the Compact City scenario.
- There is overall increase in the cost differential for the Compact City scenario from \$41 billion to \$69 billion.
- The largest changes across sectors can be observed for open space as land cost is the main cost component in established areas.
- The largest changes across scenarios can be observed for the Compact City and Consolidated City scenarios which see the highest share of development in established areas across scenarios.

| Sector                                   | Sc1          | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|------------------------------------------|--------------|----------------------|----------------|----------------------|----------------------|
|                                          | Compact City | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                                          | \$b, real    | \$b, real            | \$b, real      | \$b, real            | \$b, real            |
| Local infrastructure                     | 135          | 148                  | 160            | 158                  | 163                  |
| Education                                | 43           | 39                   | 43             | 39                   | 36                   |
| Open space                               | 12           | 12                   | 13             | 11                   | 10                   |
| Community facilities                     | 18           | 16                   | 15             | 16                   | 12                   |
| Electricity                              | 82           | 84                   | 91             | 91                   | 88                   |
| Gas                                      | 13           | 13                   | 13             | 13                   | 13                   |
| Water and Wastewater                     | 35           | 38                   | 40             | 44                   | 46                   |
| Transport                                | 405          | 435                  | 438            | 429                  | 426                  |
| Total ex. established area land cost     | 744          | 784                  | 813            | 799                  | 793                  |
| Difference to<br>Dispersed City scenario | -69          | -29                  | 0              | -13                  | -20                  |
| Total – central case                     | 776          | 800                  | 817            | 807                  | 797                  |
| Difference to<br>Dispersed City scenario | -41          | -18                  | 0              | -10                  | -20                  |

# 4.12 Infrastructure impacts across scenarios to 2056 – total cost ex. established area land cost (\$ billions)

Note: Figures are denoted in real 2022/23 dollars. Cost includes cumulative operating cost until 2056. Figures have been rounded to the nearest billion and may not add up.

Data source: CIE.

## Summary of infrastructure costs by sector

#### Local Infrastructure

Urban development requires substantial additional local infrastructure until 2056. This includes the streetscape and reticulation of services within a development area to each residential development and includes:

- earthworks and local roads
- civil works including drainage reticulation and connection

- sewerage reticulation and connection
- utilities including water and gas, electricity, telecommunications reticulation and connection, and
- conversion of street scapes.

Total local infrastructure cost per dwelling differs by type of development and dwelling (table 4.13). The primary source we rely on for local infrastructure costs of development is the *Infrastructure Provision in Different Development Settings Metropolitan Melbourne Costing and Analysis* report (SMEC, 2019).<sup>7</sup>

The cost of land for local infrastructure associated with greenfield development has been separately included in the housing model as a component of dwelling costs.<sup>8</sup>

| Dwelling type          | Infill/Brownfield | Greenfield (including regional) |
|------------------------|-------------------|---------------------------------|
|                        | \$/dwelling       | \$/dwelling                     |
| Separate house         | 38 523            | 71 179                          |
| Attached               | 38 523            | 71 179                          |
| Low rise apartments    | 50 114            | 92 597                          |
| Medium rise apartments | 31 682            | 58 539                          |
| High rise apartments   | 13 250            | 24 482                          |
| Other                  | 38 523            | 71 179                          |

#### 4.13 Local infrastructure capital cost per dwelling assumed in the model

Note: Figures are denoted in real 2022/23 dollars. This table does not include the premium of \$20 985 per dwelling for converting industrial land to residential use in Arden and Fishermans Bend.

The total costs of local infrastructure including operating cost<sup>9</sup> of 2 per cent per annum associated with residential development are likely to be large (over \$135 billion) (chart 4.14).

Costs are highest for scenarios with high shares of greenfield development, such as the Distributed State scenario (\$163 billion) and the Dispersed City scenario (\$160 billion), due to the higher local infrastructure cost per dwelling for greenfield development (including regional greenfield).

The Compact City and Consolidated City scenarios have the lowest cost (\$135 billion and \$148 billion) across scenarios due to the relatively high share of infill development in established areas. This is despite the additional local infrastructure costs when converting industrial land to residential use in some parts of inner Melbourne.

OFFICIAL

<sup>&</sup>lt;sup>7</sup> SMEC, 2019, Infrastructure Provision in Different Development Settings Metropolitan Melbourne Costing and Analysis Report.

<sup>&</sup>lt;sup>8</sup> Note, that for brownfield development in Arden and Fishermans Bend there is a premium of \$13 686 per dwelling in addition to the values shown in the table below.

<sup>9</sup> SMEC, 2019, Infrastructure Provision in Different Development Settings Metropolitan Melbourne Costing and Analysis Report, p.79



#### 4.14 Local infrastructure impacts across scenarios to 2056 - total cost (\$ billions)

Note: Total cost cumulative until 2056. Figures are denoted in real 2022/23 dollars. Data source: CIE.

#### **Open Space**

Public open space (including parks, gardens, playgrounds, public beaches, riverbanks and waterfronts, outdoor playing fields and courts and publicly accessible bushland) contribute to liveability, connectivity and mitigation of urban heat impacts.

Given the large amount of public open space availability of any kind, this analysis focuses on parks & gardens, recreation corridors, and sports fields & organised recreation for Metropolitan Melbourne and parks, gardens, and sport grounds for Regional Victoria.<sup>10</sup> This means local councils and state government provide mixed passive and active open space for their communities.

To meet the objectives of this analysis, we have adopted a benchmarking approach, i.e., additional open space provision is a function of 'meeting the benchmark' and 'population density.'

The benchmark is set as the current average provision rate by population density. This allows for detailed excess capacity and demand modelling at a regional area level (Statistical Area 3 level) and reflects the average open space provision and planning to date.

We modelled the cost of providing additional open space infrastructure by managing demand and excess capacity at a regional area level (SA3).

Until 2056, the additional open space requirement ranges between 2 566 and 3 031 hectares across scenarios, with the Compact City scenario requiring the most and the Distributed State scenario requiring the least additional open space. To gain a deeper understanding of the order of magnitude, it is helpful to put these results into perspective. The additional open space required in the Compact City scenario is nearly equivalent to

<sup>10</sup> This differs from the provision of community sport and recreation hubs, which provide dedicated small-sized hubs (<0.5 hectares), such as tennis and netball courts.</p>

the entire land area of the City of Melbourne, spanning over 3 700 hectares. In contrast, the variance between the Compact City and Distributed State scenarios represents the total expanse of open space managed by the City of Melbourne, encompassing approximately 500 hectares.

This is because there is greater capacity in existing open space in less dense areas, meaning that no or less additional open space is required. The primary factor driving the need for more open space is the change in population density and the type of development area. In greenfield areas, where there is no surplus capacity, new open spaces are typically required. On the other hand, infill development takes place in highdensity regions, especially in inner and middle Melbourne, resulting in a greater demand for open space in those areas.

The cost of providing additional open space infrastructure ranges between \$10.8 to \$26.1 billion across the scenarios and includes capital, land, and operating cost (chart 4.15).

The total expected cost for additional open space infrastructure until 2056 is highest for the Compact City (\$26.1 billion), followed by the Consolidated City scenario with \$17.1 billion. The Dispersed City and Network of Cities scenarios have similar costs with \$14.0 and \$12.5 billion. The least cost is estimated for the Distributed State scenario with \$10.8 billion.

The main cost driver is the extent of additional open space, with a significant emphasis on the land cost in scenarios involving substantial infill development. Furthermore, the expenses are influenced by the capital cost associated with open space in inner, middle, and outer Melbourne. These cost factors vary across different scenarios and notably differ from the cost drivers observed in Regional Victoria, where land and capital costs are comparatively lower.



# 4.15 Open space infrastructure impacts across scenarios, 2021 to 2056 – total cost (\$ billions)

Note: Total cost cumulative until 2056. Figures are denoted in real 2022/23 dollars. Data source: CIE.

#### **Community facilities**

Community infrastructure refers to the physical and social assets that are essential for communities to thrive. These facilities can include a range of amenities, such as community centres, libraries, health clinics, sports facilities, and cultural spaces. They play a critical role in fostering social cohesion, promoting public health and wellbeing, and supporting economic growth.

Community infrastructure encompasses a wide variety of facilities. Some, like large cultural and sporting facilities, serve regional catchments and are planned at the state level. The costs associated with these types of facilities are unlikely to vary significantly across scenarios and have been excluded from this analysis. This report focuses on three distinct types of community facility hubs that play a crucial role in serving local communities and are directly linked to the growth of local populations and dwellings.

Table 4.16 provides a brief description of these hubs:

- Health and wellbeing hubs
- Sport and recreation hubs<sup>11</sup> and additional aquatic centres, and
- Art and cultural hubs.

| Area                                         | Description                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Health and wellbeing hubs                    | Public community health, wellbeing and justice support services including services<br>such as specialist medical treatment, nursing care, allied health, dental services,<br>counselling services (financial, domestic violence, etc), antenatal and postnatal<br>clinics, district nursing, primary injury, services for children (immunisation, speech<br>therapy, etc) and community mental health. |
| Sport and recreation hubs and aquatic centre | Provide multipurpose courts for netball, basketball, tennis, etc, and have at least one large multipurpose room for activities such as gymnastics, dance, table tennis and fitness classes, and aquatic centres at some locations                                                                                                                                                                      |
| Art and cultural hubs                        | Library and community gatherings spaces                                                                                                                                                                                                                                                                                                                                                                |

#### 4.16 Community facility provision

Source: CIE.

We modelled the cost and demand of providing additional community facilities by managing demand and excess capacity at a regional area level (SA2) based on population. This approach ensures that facilities are appropriately scaled according to the additional population growth. It allows for a conservative estimation and subsequent aggregation of total numbers at a functional urban area level.

Until 2056, the requirement for additional community facility hubs ranges between 292 and 407 (total number of different hubs) across the different scenarios. The Compact City scenario requires the highest additional provision, while the Distributed State requires the least. The main driver for additional provision is population growth in Metropolitan Melbourne and regional cities, as we assume that there is sufficient excess capacity in regional Victoria outside of regional cities.

<sup>11</sup> Sport and recreation hubs differ from high-quality open space as they offer sport pavilions, and designated facilities such as tennis or netball courts.

The cost of providing additional community infrastructure ranges between \$13.7 and \$24.4 billion across scenarios (chart 4.17).

The total expected costs for additional community infrastructure until 2056 are highest for the Compact City scenario (over \$24.4 billion), followed by the Consolidated City scenario with over \$20.6 billion and the Networks of Cities scenario with over \$18.4 billion. The least cost is estimated for the Dispersed City and Distributed Stata scenarios, with over \$17.5 and \$13.7 billion, respectively.

Across scenarios, the total costs are mainly driven by the population growth in inner Melbourne, as these have higher construction and land costs. Scenarios with a high proportion of population growth in regional areas (outside of regional cities) generally have lower costs, assuming no capacity constraint in those areas.





Note: Total cost cumulative until 2056. Figures are denoted in real 2022/23 dollars. Data source: CIE.

#### Education

In Victoria, education is compulsory for children aged from 6 to 17 years.<sup>12</sup> The education system consists of three main stages:<sup>13</sup>

- Kindergarten/preschool,
- Primary school and Secondary school, and
- Tertiary education.

www.TheCIE.com.au

<sup>12</sup> https://www.study.vic.gov.au/en/study-in-victoria/victoria's-schoolsystem/Pages/default.aspx

<sup>13</sup> https://liveinmelbourne.vic.gov.au/live/education-and-childcare/melbournes-educationsystem

Our analysis excludes tertiary education due to the large catchments they serve, making it unlikely that costs differ by scenario.

Note that this analysis of education costs in Victoria is intended as a high-level overview. The assumptions made in this study are broad to facilitate a simplified model of infrastructure responses and their associated costs. Real-world assessments are likely to differ significantly, considering various complex inputs and decisions. It is important to acknowledge that the Department of Education may have alternative methods of addressing growth that have not been considered in this analysis. Therefore, the findings presented here may not necessarily reflect the planning approach of the Department of Education.

The Victorian Government has committed to providing free kindergarten programs for all Victorian three- and four-year-old children, leading to a surge in demand for new facilities. We assume that under current provision patterns 43 per cent of additional enrolments will be accommodated in centre-based day cares and the Victorian Government will fund, but not necessarily operates, 57 per cent of all new facilities either directly or through grants to meet the new policy reform.

Primary and secondary schools are either government-run or private. To maintain consistency with other infrastructure sectors, we model government and non-government provision together, taking a resource cost approach. This means we recognise that non-government schools receive gap funding. School infrastructure is modelled to support total Victorian school enrolments; however, the response is based on students being housed in infrastructure developed to government standards. Based on the current ratio of government to non-government school enrolments a cost to government for infrastructure provision has also been identified.

Primary and secondary schools can accommodate additional enrolments by utilising their existing permanent and relocatable capacity (within an adopted provision of total capacity). Beyond that, new additional permanent facilities or schools are required. The priority responses to meet additional enrolments differ by region. For example, schools in inner Melbourne cannot use relocatable capacity, meaning that new permanent buildings on-site or schools are needed for additional enrolments beyond a school's existing permanent capacity.

We modelled the cost of providing additional education infrastructure by managing enrolment and capacity at a regional area level (SA3). To accommodate additional enrolments by 2056:

- 832 new kindergarten facilities are needed across the state due to the new policy reform and the anticipated growth. This assumes that 57 per cent of the anticipated growth will be accommodated in new kindergartens, and the remainder in centre-based day care facilities. If all enrolment growth were to be supported in kindergarten 1 460 new kindergartens would be required.
- Between 194 and 257 new primary schools are needed, with the Compact City and the Dispersed City scenarios requiring the most and the Distributed State scenario requiring the least. Government schools account for approximately 67 per cent of these (with marginal variation by scenario).

Between 33 and 47 new secondary schools are needed, with the Compact City and the Dispersed City scenarios requiring the most and the Distributed State scenario requiring the least. Government schools account for 44 to 54 per cent of these varying by scenario.

The cost of providing additional school infrastructure ranges from \$37.0 to \$55.3 billion for the total Victorian school infrastructure (chart 4.18). Scenarios that involve more additional enrolments in Metropolitan Melbourne have substantially higher costs in terms of capital and land. Growth in inner Melbourne and Melbourne new growth areas often requires new schools due to capacity constraints.



#### 4.18 Total school infrastructure cost to 2056 - total cost (\$ billions)

Note: Total cost cumulative until 2056. Figures are denoted in real 2022/23 dollars. Data source: CIE.

#### Electricity

Electricity infrastructure is an essential utility service and is typically divided into three main components:

- the power generation infrastructure and transmission network,
- the distribution network, and
- the customer connection (included in local infrastructure cost and not separately estimated).

Each of these components contributes to the overall cost and planning of the electricity infrastructure.

We modelled the cost of providing additional electricity distribution infrastructure through managing operational maximum demand and excess capacity at a zone substation area level, while power generation and transmission capacity are managed at a state-level.

To estimate additional infrastructure requirements, we have adopted the following approach:

- Additional power generation and transmission network infrastructure requirements is based on the AEMO's Integrated System Plan (2022). This requirement does not differ by scenario since generation infrastructure is usually designed to ensure reliable and stable power supply.
- Additional distribution network infrastructure requirements, including zone substations, sub-transmission lines, transformers, and feeders, are based on the excess capacity in the network and the need to augment the system if capacity constraints occur.
- This differs by scenario as population growth will happen in different areas, and consumption and demand patterns vary due to various factors such as region, dwelling typology, or electric vehicle use.

Operational consumption and demand have been estimated for each zone substation and scenario, showing minimal variation across different scenarios.

The overall cost of providing additional electricity infrastructure for future growth is more than \$82 billion under all scenarios. Approximately half of the cost is attributed to installing new renewable energy power capacity and new transmission networks, totalling over \$42 billion until 2056 (chart 4.19):

- Specifically, this would result in a more than doubling of the total installed power generation capacity by 2056, from 20 GW to over 56 GW, and
- the current distribution network capacity would also double from 9.6 GW to over 17 GW across all scenarios.

The cost variations across scenarios are relatively minor, with the highest difference amounting to \$8 billion. The Dispersed City and Network of Cities scenarios have the greatest overall costs. These scenarios require more widespread capacity augmentations across the entire state of Victoria, whereas the other scenarios focus on augmentations either in Metropolitan Melbourne or regional Victoria, but not both. In particular, disproportional high growth in regional Victoria leads to a greater need for augmentation as the existing infrastructure is insufficient. In addition to the regional variations in capacity constraints, the total operational electricity use varies across scenarios, driven by different factors:

- The Compact City and Consolidated City scenarios exhibit the lowest operational electricity consumption among the analysed scenarios. This can be attributed to a higher proportion of apartments being developed, as apartments generally have a greater operational consumption compared to houses, mainly due to the absence of rooftop solar PV systems. However, this increased consumption is counterbalanced by a reduced number of electric vehicle (EV) kilometres travelled in these scenarios, resulting in an overall lower consumption.
- The Dispersed City, Network of Cities, and Distributed State scenarios show higher operational electricity consumption from electric vehicles. This is due to the longer distances that need to be covered in these scenarios. Electric vehicle electricity consumption is projected to account for 57 percent of total residential operational consumption by 2056, making it a significant driver of differences between scenarios.





Note: Total cost cumulative until 2056. Figures are denoted in real 2022/23 dollars. Data source: CIE. AEMO ISP (2022).

#### Natural Gas networks

The future of natural gas infrastructure in Victoria is a matter of significance as the state endeavours to achieve a more sustainable and reliable energy system. Infrastructure Victoria has undertaken a state-wide analysis of the implications of the energy transition for Victoria's extensive gas infrastructure assets.<sup>14</sup> The analysis provides advice and makes 11 recommendations to the Victorian Government, underpinned by extensive research, modelling and stakeholder input. The advice report informed the Victorian Government's Gas Substitution Roadmap, a policy framework that charts the strategic pathway for transitioning away from traditional natural gas usage:<sup>15</sup>

- A strategic plan for transitioning away from traditional natural gas towards low-carbon energy sources such as renewables, hydrogen and biogas.
- An emphasis of the importance of energy efficiency measures, promoting the use of energy-efficient appliances and systems to reduce overall energy consumption.
- A focus on strategic infrastructure planning and investment to support the transition, ensuring reliable supply and optimising existing infrastructure for new energy sources.

The Australian Energy Market Operator (AEMO) has recently published its Gas Statement of Opportunities (GSOO) report, which outlines the expected demand and supply of gas in the over the next 20 years.<sup>16</sup> The report indicates that natural gas

<sup>14</sup> Infrastructure Victoria (2021), Towards 2050: Gas infrastructure in a zero emissions economy https://www.infrastructurevictoria.com.au/project/infrastructure-victoria-advice-on-gasinfrastructure/#about

<sup>&</sup>lt;sup>15</sup> Victorian Government (2023), *Victoria's Gas Substitution Roadmap*, https://www.energy.vic.gov.au/renewable-energy/victorias-gas-substitution-roadmap

<sup>16</sup> AEMO (2023), Gas Statement of Opportunities March 2023 For central and eastern Australia, https://aemo.com.au/-

demand in Victoria is expected to decline due to various factors, including increasing renewable energy generation and energy efficiency measures.

While residential properties no longer need to be connected to natural gas, the future adoption of gas remains uncertain. AEMO's forecast under the Orchestrated Step Change (1.8°C) scenario suggests that current natural gas consumption will decrease from over 200 PJ today to less than 125 PJ by 2042.<sup>17</sup> This indicates that natural gas will still have a role in the coming decades.

Given this decline, capacity constraints and additional large-scale infrastructure investments in the distribution network are unlikely. Therefore, we have taken a pragmatic approach to estimate the total cost. Total costs are based on the most recent AER submissions from the three distributors and linearly reduced according to gas consumption demand in Victoria.

We assume:

- Natural gas consumption and additional augmentation are expected to be consistent across scenarios due to the absence of capacity constraints.
- New industrial and commercial users requiring natural gas in their production process will be located near existing natural gas infrastructure, minimising the need for additional assets.
- Growth scenarios will not differ in terms of residential natural gas demand and the overall trend follows the AEMO forecasts.
- The decommissioning of existing assets and the cost of maintaining, replacing, and augmenting the system will align with the growth trend projected by AEMO's forecast and will be the same across scenarios.

The total cost across all scenarios is estimated at \$13.2 billion (real dollars) by 2056. This includes capital cost of \$7.1 billion and cumulative operating cost of \$6.1 billion. It is important to note that this is a high-level estimate based on the assumption that capital and operating expenditure are directly linked to natural gas consumption.

#### Water and wastewater

There are 15 urban water corporations which provide water and wastewater services to residential and non-residential customers in cities and regional towns throughout Victoria.

Across Victoria there is currently limited capacity in the water supply and wastewater treatment, as well as the distribution networks, to meet future growth beyond a 5 to 10 year horizon. Additional investments will, therefore, be required to support the future population and employment growth from 2023 onward. Climate change will also place further pressure on the water security which will also bring forward the need for new

<sup>/</sup>media/files/gas/national\_planning\_and\_forecasting/gsoo/2023/2023-gas-statement-ofopportunities.pdf?la=en

<sup>17</sup> http://forecasting.aemo.com.au/Gas/AnnualConsumption/Total

sources of supply to manage water security risks. Different solutions are required in the different locations, depending on the local circumstance.

The level and cost of new investments will vary by water corporation. This, in part, reflects the higher water use per property in regional Victoria due to hotter and drier conditions. The costs differences will also reflect the different options available to manage water security and wastewater services. In coastal regions, for example, desalinated sea water is expected to be one viable option. New dams are unlikely to be viable due, in part, to future climate risk. Other solutions beyond these traditional approaches will be required, including recycled water will be required. Similarly, wastewater transport/treatment costs are expected to be higher in regional areas due to the higher levels of treatment required for discharge to inland waterways. This will result in higher costs in the Network of Cities and Distributed State scenarios where there is a larger share of population and employment in inland regional areas.

The precise solutions are expected to differ in different locations throughout Victoria depending on the unique options available. In some cases, for example, there may be scope to purchase water entitlements currently being used for low value agricultural use. Although these options are unlikely to be sufficient to meet the capacity required where the scenario results in a substantial increase in population/employment in that region.

The analysis conducted for this report should, therefore, be interpreted as providing high level guidance on the costs of service provision under each option.

Tables 4.20 summarise the cost outcomes separately for water supply and wastewater provision, including network distribution costs.

| Item                                  | Sc1             | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|---------------------------------------|-----------------|----------------------|-------------------|----------------------|----------------------|
|                                       | Compact<br>City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                       | \$m             | \$m                  | \$m               | \$m                  | \$m                  |
| Supply augmentation/treatment to 2036 |                 |                      |                   |                      |                      |
| Water - capex                         | 1 170           | 1 209                | 1 228             | 1 203                | 1 190                |
| Water - opex                          | 887             | 927                  | 963               | 985                  | 1 000                |
| Wastewater - capex                    | 487             | 550                  | 614               | 823                  | 880                  |
| Wastewater - opex                     | 356             | 441                  | 530               | 765                  | 895                  |
| Sub total                             | 2 900           | 3 127                | 3 334             | 3 776                | 3 964                |
| Supply augmentation/treatment to 2056 |                 |                      |                   |                      |                      |
| Water - capex                         | 6910            | 7 130                | 7 313             | 6 841                | 6 773                |
| Water - opex                          | 5 201           | 5 415                | 5 732             | 5 534                | 5 707                |
| Wastewater - capex                    | 2 912           | 3 274                | 3 729             | 4 743                | 5 351                |
| Wastewater - opex                     | 2 149           | 2 628                | 3 296             | 4 384                | 5 557                |
| Sub total                             | 17 173          | 18 447               | 20 071            | 21 502               | 23 388               |
| Network to 2036                       |                 |                      |                   |                      |                      |

#### 4.20 Estimated additional water and wastewater expenditure – total cost (\$ millions)

| Item               | Sc1    | Sc2    | Sc3    | Sc4    | Sc5    |
|--------------------|--------|--------|--------|--------|--------|
| Water - capex      | 2 067  | 2 165  | 2 225  | 2 536  | 2 488  |
| Water - opex       | 1 426  | 1 549  | 1 633  | 1979   | 1 982  |
| Wastewater - capex | 2 461  | 2 478  | 2 436  | 2 511  | 2 504  |
| Wastewater - opex  | 1 235  | 1341   | 1 438  | 1 662  | 1 754  |
| Sub total          | 7 189  | 7 533  | 7 731  | 8 688  | 8 728  |
| Network to 2056    |        |        |        |        |        |
| Water - capex      | 5 280  | 5 544  | 5 662  | 6 522  | 6 478  |
| Water - opex       | 3 617  | 3 911  | 4 156  | 5 137  | 5 284  |
| Wastewater - capex | 6 216  | 6 300  | 6 067  | 6 338  | 6 307  |
| Wastewater - opex  | 3 075  | 3 322  | 3 598  | 4 229  | 4 732  |
| Sub total          | 18 188 | 19 078 | 19 482 | 22 225 | 22 801 |

Source: The CIE

Note: Total cost cumulative until 2036 and 2056. Figures are denoted in real 2022/23 dollars. Figures have been rounded to the nearest million and may not add up.

#### Transport

Transport infrastructure costs have been prepared by ARUP and WT Partnership and cover capital and operating costs (see ARUP and WT Partnership reports for further detail).

Total cumulative cost until 2056 are highest for the Dispersed City scenarios (\$438 billion) and Consolidated City scenario (\$435 billion) and followed by the Network of Cities scenario (\$429 billion) and the Distributed State scenario (\$426 billion) (chart 4.21). The Compact City scenario has the lowest cost across all scenarios with \$405 billion, a cost differential of over \$33 billion or 7 per cent compared to Dispersed City scenario.

Capital cost account for approximately 84 per cent of total cumulative cost until 2056, while the share varies only marginal across scenarios.



4.21 Transport infrastructure impacts across scenarios to 2056 – total cost (\$ billions)

Main capital cost drivers are roads including active transport<sup>18</sup> (54 to 58 per cent) and heavy rail (37 to 41 per cent). The share of heavy rail capital cost is higher for scenarios with more development in Metropolitan Melbourne (Compact City, Consolidated City and Dispersed City scenarios), and vice versa for roads (chart 4.22).

Main operating cost driver are heavy rail (58 to 60 per cent) and buses (34 to 38 per cent). The share of operating cost for buses is higher for scenarios with more regional development (Network of Cities and Distributed State scenarios), and relatively constant for heavy rail across scenarios.



4.22 Transport capital cost by mode across scenarios to 2056 (\$ billions)

18 Additional active transport cost are only estimated for the Compact City, Consolidated City and Network of Cities scenarios and make up less than 1 per cent of the total roads capital cost.

*Note:* Total cost cumulative until 2056. Figures are denoted in real 2022/23 dollars. *Data source:* ARUP.

Note: Total cost cumulative until 2056. Figures are denoted in real 2022/23 dollars. *Data source:* ARUP.



4.23 Transport operating cost by mode across scenarios to 2056 - (\$ billions)

Note: Total cost cumulative until 2056. Figures are denoted in real 2022/23 dollars. Data source: ARUP.

### PART III

Impacts of alternative development scenarios



# 5 Overall impacts of scenarios

Impacts comprise a range of ways that a scenario influences the Victorian community. Impacts can include changes to accessibility, housing, business productivity and the environment. These impacts can be considered in the dimensions of:

- efficiency the costs and benefits of the urban development scenario
- equity how different parts of Victoria are impacted by the urban development scenario, and
- risk which scenarios perform well in a wider range of circumstances or are less likely to have implementation risks.

The way different indicators are arranged against these dimensions in this study is shown in table 5.1.



#### 5.1 Translating indicators into an overall framework

Data source: CIE.

The chapters below set out impacts in detail. A summary of quantitative indicators of the scenarios is shown in table 5.2.For many of these indicators it is most useful to compare across scenarios. For comparison we use the Dispersed City scenario as it represents a continuation of recent trends.

- The Compact City scenario provides the highest net value of housing. This is because it has more housing in locations that people value now and leads to the largest increase in job accessibility across scenarios. This difference is highly material at \$150 000 per relocated dwelling. The Compact City scenario also has the highest business productivity and employment participation impacts. As a result, average income which is used as a summary indicator of economic impact is estimated to be \$5000 higher per person compared to the Dispersed City scenario over the period 2021 to 2056. From an environmental perspective, the Compact City scenario has the third lowest combined GHG emissions and requires the least additional urban land take. The lower overall GHG emissions (compared to the Dispersed City) is primarily due to significantly lower emissions from vehicles, offset by higher emissions from buildings, particularly embodied emissions from concrete and steel used to make apartments. The Compact City performs moderately on housing affordability measures, providing more affordable housing in Inner Melbourne but less overall compared to other scenarios.
- The Consolidated City has the second highest housing value, relatively high job accessibility and positive economic impacts compared to the Dispersed City scenario. The Consolidated City scenario has marginally higher GHG emissions compared to the Dispersed City, due to the increase in emissions from buildings (which is partly offset by lower emissions from vehicles). It also has lower transport externalities and land take compared to the Dispersed City.
- The Network of Cities has lower housing value, lower job accessibility and worse economic impacts compared to the Dispersed City scenario. The Network of Cities has marginally lower GHG emissions compared to the Dispersed City, due to the lower emissions from vehicles and mostly offset by higher emissions from buildings. It also has lower transport externalities, but a higher land take compared to the Dispersed City
- At the other extreme, the Distributed State scenario is least aligned to current housing and business preferences. It has the lowest GHG emissions, due to the lower emissions associated with a higher share of detached housing (driven by using timber and brick rather than emissions-intensive concrete and steel), as well as lower emissions from vehicles. It also has the lowest transport externalities, associated with more travel in less densely populated areas. The land take, however, is the highest of the scenarios. It would lead to a higher share of housing being affordable although this is not necessarily a positive outcome as the lower housing cost reflects that housing is located where people have a lower willingness to pay to live.

A summary of physical indicators of outcomes from scenarios is shown in table 5.2.

A qualitative assessment of the scenarios is shown in table 5.3. While infill-focused scenarios perform well on efficiency metrics, a key risk is ensuring that enough housing and business space is provided, as these scenarios have a higher risk of community opposition related to infill development.

#### 5.2 Summary indicators of scenarios

|                                                             |                                                     | Sc1          | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|-------------------------------------------------------------|-----------------------------------------------------|--------------|----------------------|-------------------|----------------------|----------------------|
| Indicator                                                   | Unit                                                | Compact City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
| Housing and social indicators                               |                                                     |              |                      |                   |                      |                      |
| Net value of housing                                        | \$b, present value relative to Dispersed City       | 105          | 52                   | 0                 | -55                  | -107                 |
| Of which: value of improved access to jobs                  | \$b, present value relative to Sc3                  | 100          | 47                   | 0                 | -37                  | -80                  |
| Net value of housing per dwelling                           | \$000/relocated dwelling relative to Dispersed City | 152          | 75                   | 0                 | -79                  | -155                 |
| Share of all dwellings that are detached, 2056              | Per cent                                            | 53.9         | 58.0                 | 64.6              | 62.1                 | 67.1                 |
| Accessibility to jobs (car 2036)                            | Ratio to Dispersed City                             | 110          | 104                  | 100               | 101                  | 101                  |
| Accessibility to jobs (car 2056)                            | Ratio to dispersed city                             | 115          | 106                  | 100               | 100                  | 95                   |
| Accessibility to jobs (public transport 2036)               | Ratio to dispersed city                             | 110          | 104                  | 100               | 98                   | 96                   |
| Accessibility to jobs (public transport 2056)               | Ratio to dispersed city                             | 118          | 109                  | 100               | 95                   | 87                   |
| Public transport mode share (AM peak)                       | Per cent of trips                                   | 15.0         | 13.4                 | 12.1              | 12.0                 | 11.3                 |
| Share of dwellings for sale under \$750 000 (today's value) | Per cent                                            | 47.9         | 49.6                 | 55.9              | 56.0                 | 62.9                 |
| Share of dwellings available for rent under \$500 per week  | Per cent                                            | 68.5         | 68.3                 | 72.5              | 74.3                 | 78.8                 |
| Economic indicators                                         |                                                     |              |                      |                   |                      |                      |
| Business location productivity                              | \$b relative to Dispersed City                      | 30.8         | 9.0                  | 0                 | - 0.6                | -8.2                 |
| Agglomeration                                               | \$b relative to Dispersed City                      | 19.7         | 12.3                 | 0                 | -1.8                 | -15.5                |
| Employment impacts                                          | \$b relative to Dispersed City                      | 12.1         | 5.0                  | 0                 | 0.2                  | -2.6                 |
| Income                                                      | \$/person (2021 to 2056) relative to Dispersed City | 5 185        | 1 688                | 0                 | - 55                 | -1 310               |
| Environmental indicators                                    |                                                     |              |                      |                   |                      |                      |
| Building operational GHG emissions                          | Million tonnes CO2e relative to Dispersed City      | 0.7          | 0.3                  | 0                 | 0.1                  | 0.0                  |
| Building embodied GHG emissions                             | Million tonnes CO2e relative to Dispersed City      | 14.8         | 8.0                  | 0                 | 1.3                  | -1.8                 |
| Vehicle tailpipe GHG emissions                              | Million tonnes CO2e relative to Dispersed City      | -16.8        | -7.6                 | 0                 | -1.5                 | -10.8                |
| Vehicle (electric) operational energy GHG emissions         | Million tonnes CO2e relative to Dispersed City      | -0.5         | -0.2                 | 0                 | -0.0                 | 0.1                  |
| Total GHG emissions                                         | Million tonnes CO2e relative to Dispersed City      | -1.8         | 0.5                  | 0                 | -0.1                 | -12.5                |
| Environmental externalities from transport                  | \$b relative to Dispersed City                      | -0.5         | -0.3                 | 0                 | -0.8                 | -1.5                 |
| Additional urban land take                                  | Km2 relative to Dispersed City                      | -313         | -190                 | 0                 | 20                   | 241                  |

Note: Darker teal is the most positive moving to darker orange as the most negative of the five scenarios. Source: CIE.

#### 5.3 Summary of physical impacts of scenarios

| Metrics                                                                        | Metrics in 2021 |       |       |       | Metrics | s in 2036 |       |        |        | Metric | s in 2056 |
|--------------------------------------------------------------------------------|-----------------|-------|-------|-------|---------|-----------|-------|--------|--------|--------|-----------|
|                                                                                | All             | Sc1   | Sc2   | Sc3   | Sc4     | Sc5       | Sc1   | Sc2    | Sc3    | Sc4    | Sc5       |
| Number of people ('000)                                                        | 6 460           | 8 279 | 8 279 | 8 279 | 8 280   | 8 280     | 8 279 | 10 666 | 10 666 | 10 666 | 10 666    |
| Number of jobs ('000)                                                          | 3 248           | 4 345 | 4 345 | 4 345 | 4 345   | 4 345     | 4 345 | 5 498  | 5 498  | 5 498  | 5 498     |
| Number of households ('000)                                                    | 2 521           | 3 347 | 3 347 | 3 347 | 3 346   | 3 345     | 3 338 | 4 386  | 4 391  | 4 389  | 4 382     |
| Accessibility metrics                                                          |                 |       |       |       |         |           |       |        |        |        |           |
| Job density index (Car) 2018=100                                               | 100             | 101   | 100   | 136   | 125     | 117       | 136   | 125    | 117    | 117    | 110       |
| Job density index (PT) 2018=100                                                | 100             | 98    | 96    | 158   | 146     | 133       | 158   | 146    | 133    | 126    | 113       |
| Share of people within 45 minutes (by PT) of a metropolitan centre (per cent)  | 40.2            | 46.4  | 47.5  | 46.3  | 44.0    | 45.6      | 44.7  | 41.9   | 49.0   | 47.0   | 44.9      |
| Share of people within 45 minutes (by car) of a metropolitan centre (per cent) | 71.7            | 71.5  | 74.6  | 71.6  | 67.5    | 69.0      | 67.5  | 62.1   | 77.0   | 73.2   | 62.4      |
| Average jobs accessible within 45 minutes by public transport ('000)           | 145             | 234   | 271   | 234   | 214     | 218       | 273   | 239    | 416    | 332    | 272       |
| Average jobs accessible within 30 minutes by car ('000)                        | 830             | 1 091 | 1 201 | 1091  | 1016    | 1 032     | 1 133 | 1036   | 1 443  | 1 219  | 1 122     |
| GHG emissions from transport (mt)                                              | 59.52           | 33.63 | 34.16 | 34.60 | 34.51   | 33.98     | 0.35  | 0.36   | 0.37   | 0.39   | 0.39      |
| GHG emissions from new buildings (mt)                                          | N/A             | 2.59  | 2.34  | 2.19  | 2.23    | 2.21      | 2.38  | 2.24   | 1.97   | 2.01   | 1.89      |
| Total value of other transport externalities (\$m)                             | 972             | 1054  | 1059  | 1067  | 1047    | 1028      | 1020  | 1031   | 1050   | 1009   | 972       |
| Amount of land used ('000s of hectares), cumulative since 2021                 | N/A             | 17    | 23    | 30    | 30      | 34        | 37    | 26     | 38     | 40     | 57        |

Note: The transport model has been run for 2018 rather than 2021. We have assumed that travel times are unchanged between 2018 and 2021 in order to calculate accessibility outcomes for 2021. Source: CIE.

#### 5.4 Qualitative assessment of impacts of the scenarios

|                            | Sc1                                                                                                                                   | Sc2                                                                                                  | Sc3                                                                                            | Sc4                                                                                                                                              | Sc5                                                                                                                                              |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicator                  | Compact City                                                                                                                          | Consolidated City                                                                                    | Dispersed City                                                                                 | Network of Cities                                                                                                                                | Distributed State                                                                                                                                |
| Housing and social impacts | High — best aligns to where<br>people want to live and housing<br>types (current preferences).<br>Highest accessibility of scenarios. | Medium/high — second closest<br>alignment to type and location of<br>housing with the highest value. | Medium - third closest alignment<br>to type and location of housing<br>with the highest value. | Medium/low — moderately poor<br>alignment with current housing<br>preferences. Would require large<br>shifts in current preferences to<br>occur. | Low — poor alignment with<br>current housing preferences.<br>Would require large shifts in<br>preferences to occur.<br>Low accessibility to jobs |

|                                         | Sc1                                                                                                                                                            | Sc2                                                                                                                                      | Sc3                                                                                                   | Sc4                                                                                             | Sc5                                                                                                                      |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Indicator                               | Compact City                                                                                                                                                   | Consolidated City                                                                                                                        | Dispersed City                                                                                        | Network of Cities                                                                               | Distributed State                                                                                                        |
| Business and<br>productivity<br>impacts | High — business location<br>productivity, agglomeration and<br>employment likely highest in this<br>scenario                                                   | Medium/high – business location<br>productivity, agglomeration and<br>employment higher than Scenario<br>3 but not as high as Scenario 1 | Medium – similar business and productivity outcomes to Scenario 4                                     | Medium – similar business and productivity outcomes to Scenario 3                               | Low – business productivity and<br>employment impacts negative<br>compared to Scenario 3                                 |
| Environmental<br>impacts                | Second lowest GHG emissions<br>Lowest land take for urban<br>activity of scenarios                                                                             | Slightly higher GHG emissions<br>than Scenario 3<br>Second lowest land take                                                              | Second highest GHG emissions of<br>scenarios<br>Highest transport externalities<br>Moderate land take | Slightly lower GHG emissions that<br>Scenario 3<br>Slightly higher land take than<br>Scenario 3 | Lowest GHG emissions, due to<br>transport and embodied<br>Highest land take                                              |
| Other impacts                           | High risk of insufficient housing<br>supply if community opposition to<br>infill development occurs<br>More affordable housing in inner<br>Melbourne locations | High risk of insufficient housing<br>supply if community opposition to<br>infill development occurs                                      | Greenfield housing has lower risk<br>of opposition to delivery                                        | High risk that people and business preferences are not aligned to the scenario                  | High risk that people and<br>business preferences are not<br>aligned to the scenario<br>More affordable housing in total |

Source: The CIE.

# 6 Social impacts

For social impacts, we use changes in the value of housing as the main indicator of the value of changes in outcomes. That is, we capture the social impacts of the scenarios through estimated changes in dwelling values. This reflects the extent to which each scenario places housing where people want to live, in a type of dwelling they value, and changes the accessibility of a place. While this captures the most material social impacts, there are many ways that land use scenarios or other more detailed policies can influence people, ranging from crime, community cohesion and the liveability of a place. Given the evidence available and the strength of influence of more specific factors, we have not evaluated these other social impacts.

There are two main components of alignment with housing preferences:

- The value of housing based on current attributes of each area, net of the costs of building dwellings and the opportunity cost of land, and
- The impact of changes in attributes of each area on values. We have measured changes in accessibility for each area and how changes in job accessibility affect dwelling values.

A summary of findings is shown in table 6.1. The Compact City scenario has the highest net housing value, followed by the Consolidated City scenario. The differences are highly material, with the Compact City scenario having a higher net housing value of \$152 000 per relocated dwelling compared to the Dispersed City scenario. The key assumptions and measured impacts for each of the scenarios are discussed below.

| Scenario             | <br>Net housing value | Difference to<br>Dispersed City | Difference to<br>Dispersed City per<br>relocated dwelling |
|----------------------|-----------------------|---------------------------------|-----------------------------------------------------------|
|                      | \$b, present value    | \$b, present value              | \$000 per dwelling                                        |
| 1. Compact city      | 2 299                 | 105                             | 152                                                       |
| 2. Consolidated city | 2 245                 | 52                              | 75                                                        |
| 3. Dispersed city    | 2 193                 | 0                               | 0                                                         |
| 4. Network of cities | 2 138                 | -55                             | -79                                                       |
| 5. Distributed state | 2 087                 | -107                            | -155                                                      |

#### 6.1 Summary of social indicators of scenarios

Source: CIE.
# Approach to measuring alignment with housing preferences

A key part of any spatial scenario is the extent to which it places housing where people want to live, in a type of dwelling they value. This is measured through the alignment of a scenario with housing preferences. Very different housing patterns have emerged from different economic and political systems, which highlights the importance of considering people's housing preferences when thinking about different urban development futures. In democratic mixed market economies such as Australia, higher urban densities have tended to occur in and close to the central city and commercial and residential land uses increasingly replace industrial land in inner city areas. These trends have been facilitated by market signals through the price of land and property.

Broadly, alignment to housing preferences is highest where housing is:

- where people want to live
- reflecting types of dwellings that people want to live in, and
- is less costly to provide.

In line with this, we have developed a model of the value of property services, which is the willingness to pay for housing net of the cost of providing dwellings (including the opportunity cost of existing use of land) (chart 6.2). This modelling approach aligns to that used in cost-benefit analysis and development feasibility analysis. The calculations have been undertaken at the SA2 level.



#### 6.2 Approach to valuing residential property

Source: CIE.

The data and assumptions required to estimate the above are shown in table 6.3. Appendix L provides greater detail on these assumptions.

| 6.3 weasuring nousing impa | acts |
|----------------------------|------|
|----------------------------|------|

| Item                                                                               | Data source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current willingness to pay for space (per m2 of space)                             | We estimate hedonic models of sale prices and rents to estimate the current value of dwellings for each combination of dwelling type and SA2. This modelling uses sales and rents data from PropTrack, which was also used in the Hedonic modelling report completed by Infrastructure Victoria. $19$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cost of construction by space<br>type                                              | We use data from the ABS <i>Building Activity, Australia</i> , publication about the average construction cost for new residential dwellings in Victoria. Construction cost in 2022 dollars is equal to \$392 155 for houses, \$370 497 for townhouses and \$463 499 for apartments.<br>We apply real escalation to these costs of 1.03 per cent for houses and townhouses, and 0 per cent for apartments, based on average real growth in ABS Producer Price Indices for construction in Victoria since September 1998.                                                                                                                                                                                                    |
| Space required for each scenario<br>(m2)                                           | ABS <i>Land and Housing Supply Indicators</i> data is combined with data from the UDP Regional Greenfield 2022 analysis to estimate lot size for new residential dwellings.<br>We assume that there is only additional land take for greenfield development, with no increase in land take for infill.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Opportunity cost of sites                                                          | The opportunity cost of a site is the value of its existing use. This is conceptually<br>the value of the site, which comprises the value of the building and land.<br>We capture the opportunity cost of additional land taken in greenfield areas,<br>assuming that it would be used for agricultural purposes in the absence of<br>development. The value of agricultural land is based on data from the Valuer<br>General.<br>The opportunity cost of land that is already used for residential or employment<br>purposes is captured through lost value of housing or employment land.                                                                                                                                 |
| Changes in WTP exogenous to the scenarios                                          | The central case applies no change to spatial preferences. Changes to preferences other than those that are explicitly part of the scenarios are discussed in the Risk chapter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Changes in WTP that are part of<br>the scenarios (eg changes in<br>access to jobs) | These are through using a hedonic model to understand the value of differences<br>in accessibility, controlling for characteristics of a dwelling (e.g. the number of<br>bedrooms) and of an area (e.g. distance to the coast). We then apply this to the<br>estimates of accessibility by scenario. We have used PropTrack data to<br>construct a hedonic model for housing. This model is based on similar work<br>conducted by Infrastructure Victoria and uses similar metrics for accessibility.<br>For example, the Infrastructure Victoria hedonic modelling estimates the value<br>of distance to a train station, while we have estimated the value of accessibility<br>to jobs measured by effective job density. |
|                                                                                    | The second factor is whether and how quickly WTP declines as more space is provided in a particular type and location. We have developed estimates of the slope of the demand curve from modelling underpinning The CIE (2022) report on Demand for housing in Victoria. $\!\!\!\!\!20$                                                                                                                                                                                                                                                                                                                                                                                                                                     |

<sup>19</sup> Infrastructure Victoria, 2023, Measuring home price differences – How features, location and infrastructure affect Melbourne's home prices.

<sup>20</sup> The CIE, 2022, Demand for housing in Victoria – Stated preference research, Technical Appendix. https://www.infrastructurevictoria.com.au/wp-content/uploads/2023/03/Centre-for-International-Economics-Demand-for-housing-in-Victoria-stated-preference-research-technicalreport.pdf

| ltem                                                                 | Data source                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimating present values of future housing value and dwelling costs | To estimate the present value of housing, we discount housing values to 2021 using a discount rate of 3 per cent. This is a discount rate calibrated such that the present value of future rents are similar to the sale price of a dwelling at construction. |

Source: CIE.

#### Accounting for demand saturation

For a particular housing market, such as attached dwellings in a particular SA2, we measure the net benefit or cost of achieving a particular number of dwellings. This is the difference between how much people are willing to pay for the dwellings provided in a scenario, and what it costs to build the new dwellings required.

Changes in WTP that are part of the scenarios — such as that caused by improved accessibility of residents to jobs and services — shift demand for housing in this market from  $D_0$  to  $D_1$ .  $D_0$  represents projected demand for dwellings after accounting for uplift in WTP over time, consistent with the historical average rate of growth in dwelling prices.

There may remain a gap between the number of people who would choose this housing type and location  $(Q_1)$  and the number of dwellings in that market prescribed by the scenario  $(Q_2)$  (chart 6.4). For example, a scenario may prescribe that there are 1000 detached dwellings in a particular SA2 under the Compact City Scenario. However, even with accessibility improvements, there is only sufficient demand for 800 detached dwellings in this SA2. As a result, there is some disbenefit to the residents of 200 dwellings who would prefer to live elsewhere, but in this scenario are prescribed to live in detached dwellings in this SA2.

The net benefit (or cost) from the scenario is:

- The brown parallelogram this is the benefit to existing people living in the area (Q<sub>0</sub>) such as from changes in accessibility.
- The pink triangle, which is the benefit to new dwellings
- Less, the teal triangle, which is the disbenefit from excess provision of dwellings of that type in that location. This disbenefit occurs if the cost of supplying those dwellings exceeds the amount people are willing to pay for them. The disbenefit is larger where there is a bigger gap between the number of dwellings people demand at the cost of supply and the number provided in that scenario.

Note that for simplicity the chart assumes that the price of housing is where demand meets cost (supply). There is a large body of work suggesting that the price is actually at a point well above cost at the current provision of housing, which means that new

dwellings have a larger net benefit. For example, Kendall and Tulip (2018) estimate that detached house prices were 69 per cent above marginal costs of housing in 2016.<sup>21,22</sup>



#### 6.4 Market for housing in an area

Note: For simplicity we show this as being in equilibrium with current preferences. Because of the significant distortions in land markets this is likely not the case. Data source: CIE.

More development necessitates using sites that have less value for whatever reason and in targeting households that have weaker preferences for that location. This suggests that the value of land use change for each new dwelling will be lower for greater levels of development. The teal triangle above captures this effect, which we refer to as **demand saturation**.

The basis for estimating the shift in the demand curve from  $D_0$  to  $D_1$  is evidence about the value of accessibility to jobs, services and other factors estimated by hedonic modelling.

The basis for estimating the slope of the demand curve is evidence about housing choices for Victoria from the CIE (2022).<sup>23</sup> We have re-run the market share model from that study for different shocks to prices of dwellings to estimate the price elasticity of demand for broad housing regions and dwelling types (table 6.5). For each region, the price elasticity of demand shows how responsive the quantity of dwellings demanded is to changes in price. This is typically reported as a ratio of the percentage change in quantity demanded as a result of a one per cent price increase. The price elasticity of demand is

<sup>&</sup>lt;sup>21</sup> Kendall, R., and Tulip, P., 2018, *The effect of zoning on housing prices*, Research Discussion Paper 2018-03, Reserve Bank of Australia, available at: https://www.rba.gov.au/publications/rdp/2018/pdf/rdp2018-03.pdf

<sup>&</sup>lt;sup>22</sup> Kendall and Tulip (2018) follow the approach of Glaeser and Gyourko (2003): Glaeser, E.L. and Gyourko, J., 2003, 'The impact of building restrictions on housing affordability', *Economic Policy Review*, 9(2), pp.21-39.

<sup>&</sup>lt;sup>23</sup> The CIE, 2022, Demand for housing in Victoria – Stated preference research, Technical Appendix, prepared for Infrastructure Victoria.

typically negative, reflecting that an increase in price of dwellings for a particular submarket is associated with a decrease in the quantity of dwellings demanded.

By re-running the market share model, we found that demand for housing is more priceresponsive in Melbourne compared to regional areas, represented by a higher price elasticity of demand. That is, for a given increase in prices of houses (10 per cent in this case), the change in quantity demanded is larger in inner Melbourne (50.4 per cent) than it would be for the same magnitude of increase in house prices for regional areas.

Note that the market share model only includes two regional cities: Ballarat and Geelong. We have based our assumed price elasticity of demand for all regional areas on the price elasticity of demand derived for these two cities. We expect that this may overestimate the price responsiveness of housing demanded in regional towns and rural areas based on current housing preferences. If the degree of price responsiveness were lower than this estimate, it would imply a larger demand saturation effect.

| Region                 | Dwelling type   | Quantity change from a -<br>10 per cent price shock | Implied price elasticity of<br>demand |
|------------------------|-----------------|-----------------------------------------------------|---------------------------------------|
|                        |                 | Per cent                                            |                                       |
| Inner Melbourne        | House/townhouse | 50.4                                                | -5.04                                 |
|                        | Apartment       | 20.3                                                | -2.03                                 |
| Middle Melbourne       | House/townhouse | 36.3                                                | -3.63                                 |
|                        | Apartment       | 27.5                                                | -2.75                                 |
| Outer Melbourne        | House/townhouse | 29.2                                                | -2.92                                 |
|                        | Apartment       | 12.0                                                | -1.20                                 |
| Melbourne New Growth   | House/townhouse | 14.8                                                | -1.48                                 |
| Area                   | Apartment       | 8.5                                                 | -0.85                                 |
| Regional (Ballarat and | House/townhouse | 7.1                                                 | -0.71                                 |
| Geelong only)          | Apartment       | 33.6                                                | -3.36                                 |

#### 6.5 Price elasticity of housing demand by submarket

Source: Market share model developed in The CIE (2022), CIE.

#### Job accessibility

We have measured job accessibility using continuous metrics referred to as job access density metrics. These metrics estimate the number of jobs that residents of each area are accessible to, weighted by the travel time to get to those jobs. The calculation approach for these metrics is explained in more detail at Appendix P.

The Compact City scenario has the highest accessibility from a state-wide perspective (table 6.6). This signals that the impact of more jobs being in inner Melbourne, which is a more accessible destination than other regions, generally outweighs the value of jobs being more spread across the state.

Job accessibility by private vehicle and public transport is highest in inner Melbourne, and decreasing with distance to the CBD under all scenarios and time periods. The

Compact City scenario has the highest job access in all regions of Melbourne at both 2036 and 2056.

For Regional Cities, the Network of Cities scenario has the highest levels of accessibility. Regional centres and rural areas typically have the best accessibility under the Compact City scenario, except in 2056 by private vehicle the Network of Cities is the most accessible to jobs. This reflects that much of the accessibility of Regional Centres and Rural Areas to jobs is derived from accessibility to Melbourne CBD, which has the most jobs in the Compact City scenario.

| Year    | Scenario     | Inner<br>Melbourne | Middle<br>Melbourne | Outer<br>Melbourne | Melbourne<br>new growth<br>area | Regional<br>City | Regional<br>Centres<br>and Rural<br>Areas | Total    |
|---------|--------------|--------------------|---------------------|--------------------|---------------------------------|------------------|-------------------------------------------|----------|
|         |              | Millions           | Millions            | Millions           | Millions                        | Millions         | Millions                                  | Millions |
| Job acc | cess density | / by car           |                     |                    |                                 |                  |                                           |          |
| 2018    |              | 2.21               | 1.80                | 1.25               | 1.02                            | 0.46             | 0.44                                      | 1.29     |
| 2036    | 1            | 2.98               | 2.46                | 1.80               | 1.57                            | 0.72             | 0.67                                      | 1.85     |
|         | 2            | 2.94               | 2.45                | 1.74               | 1.47                            | 0.69             | 0.64                                      | 1.75     |
|         | 3            | 2.94               | 2.45                | 1.71               | 1.39                            | 0.68             | 0.63                                      | 1.68     |
|         | 4            | 2.88               | 2.41                | 1.74               | 1.49                            | 0.75             | 0.65                                      | 1.69     |
|         | 5            | 2.87               | 2.40                | 1.75               | 1.51                            | 0.72             | 0.66                                      | 1.67     |
| 2056    | 1            | 3.68               | 2.93                | 2.03               | 1.82                            | 0.85             | 0.77                                      | 2.28     |
|         | 2            | 3.54               | 2.89                | 1.95               | 1.74                            | 0.80             | 0.74                                      | 2.09     |
|         | 3            | 3.58               | 2.98                | 1.98               | 1.66                            | 0.81             | 0.74                                      | 1.97     |
|         | 4            | 3.46               | 2.87                | 1.99               | 1.77                            | 0.91             | 0.78                                      | 1.96     |
|         | 5            | 3.37               | 2.82                | 2.01               | 1.81                            | 0.84             | 0.76                                      | 1.84     |
| Job aco | cess density | / by public tra    | nsport              |                    |                                 |                  |                                           |          |
| 2018    |              | 1.22               | 0.94                | 0.67               | 0.62                            | 0.22             | 0.17                                      | 0.68     |
| 2036    | 1            | 1.75               | 1.38                | 1.01               | 0.96                            | 0.34             | 0.24                                      | 1.03     |
|         | 2            | 1.72               | 1.37                | 0.98               | 0.93                            | 0.33             | 0.23                                      | 0.98     |
|         | 3            | 1.70               | 1.35                | 0.96               | 0.91                            | 0.34             | 0.23                                      | 0.93     |
|         | 4            | 1.66               | 1.32                | 0.95               | 0.91                            | 0.35             | 0.22                                      | 0.92     |
|         | 5            | 1.65               | 1.31                | 0.94               | 0.90                            | 0.32             | 0.22                                      | 0.89     |
| 2056    | 1            | 2.36               | 1.89                | 1.41               | 1.32                            | 0.45             | 0.34                                      | 1.47     |
|         | 2            | 2.27               | 1.87                | 1.38               | 1.26                            | 0.44             | 0.33                                      | 1.36     |
|         | 3            | 2.21               | 1.83                | 1.32               | 1.19                            | 0.47             | 0.34                                      | 1.24     |
|         | 4            | 2.11               | 1.72                | 1.25               | 1.17                            | 0.48             | 0.33                                      | 1.18     |
|         | 5            | 2.02               | 1.65                | 1.20               | 1.13                            | 0.43             | 0.30                                      | 1.05     |

#### 6.6 Job access density by car and public transport, by scenario and region

Note: The scenario with the highest accessibility for each region (by year) is shown in bold. Source: CIE.

Differences in accessibility across scenarios are somewhat less for private vehicle (chart 6.7) compared to public transport (chart 6.8). Differences in accessibility across regions are much larger than differences across scenarios.





Source: CIE.



#### 6.8 Job access density by public transport, 2056

Source: CIE.

#### Access to infrastructure and services

Access to services has been captured through accessibility metrics, defined by whether an origin is accessible within 30 or 45 minutes to a range of destinations of interest. We have relied on estimates of the value of accessibility to services rather than straight distance from services. This will capture not only changes in where people live and where services are located, but also the effect of changes in transport network performance.

There are a wide range of services that may matter to residents. However, we have only measured accessibility to certain services (table 6.9). Accessibility to a particular type of service is only included in the modelling if:

- the service has a moderate geographical footprint, i.e. it is not a highly local service (e.g. preschools) nor a large-scale service (e.g. ports),
- the service type is a destination of significant value to residents, and
- the spatial pattern of the service in the future is relatively predictable.

For simplicity we have assumed that there are no new locations of services such as hospitals or universities. The location of each feature of interest is based on the Victoria 'Features of Interest' dataset published by Land Use Victoria.<sup>24</sup>

| Destination type                                                                  | Accessibility to this service measured in this study? | Rationale if not included                                                                                                      |
|-----------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Metropolitan activity centre – higher<br>order centres for regional<br>catchments | V                                                     |                                                                                                                                |
| Major activity centre – suburban focal points for services, etc.                  | $\checkmark$                                          |                                                                                                                                |
| Hospital                                                                          | $\checkmark$                                          | Note, we focus on measuring access to hospitals with emergency departments.                                                    |
| Universities                                                                      | $\checkmark$                                          |                                                                                                                                |
| Other tertiary education (e.g. TAFE)                                              | ×                                                     | Highly heterogenous services, meaning access to these sites has highly variable value depending on nature of site              |
| Transport network points (e.g.<br>metro train station or tram stop)               | ×                                                     | Intermediate input to service access, rather than a final destination. We measure accessibility instead.                       |
| Arterial roads                                                                    | ×                                                     | Intermediate input to accessibility, and value impact is dominated by amenity externalities. We measure accessibility instead. |
| Primary and secondary school                                                      | ×                                                     | Typically local services                                                                                                       |
| Police station                                                                    | ×                                                     | Hedonic modelling by Infrastructure Victoria suggests a negative effect on value                                               |
| Cemeteries and landfills                                                          | ×                                                     | Not a services destination, but rather a source of disamenity                                                                  |

#### 6.9 Service types for which we will measure accessibility

Source: List of services combines those from IV (2023) hedonic modelling analysis and others identified by CIE.

<sup>24</sup> Information about this dataset, including the specification and list of features identified, is available at: https://www.land.vic.gov.au/maps-and-spatial/spatial-data/vicmapcatalogue/vicmap-features-of-interest

The location of metropolitan and major activity centres are shown in chart 6.10. Similarly, we retain the existing classification of Metropolitan Activity Centres and Major Activity Centres with no additions.<sup>25</sup>





25 A list of current and future centres is available at: https://www.planning.vic.gov.au/policyand-strategy/activity-centres/activity-centres-overview

Data source: The State of Victoria Department of Environment, Land, Water and Planning 2017, available at: https://www.planmelbourne.vic.gov.au/\_\_data/assets/pdf\_file/0010/376642/Map\_14\_Metro\_and\_major\_activity\_centres.pdf

The average time to access a metropolitan activity centre via car is far lower in Melbourne compared to regional areas (chart 6.11). Differences across scenarios are small relative to the size of differences across parts of Victoria. However, higher levels of congestion in scenarios with greater development in Melbourne (e.g. the Compact City) are associated with higher car travel times to a Metropolitan Activity Centre.

We do not present times to access metropolitan or major activity centres for those residing in regional areas, since this centres hierarchy is defined for Melbourne only.



6.11 Average time to a metropolitan activity centre via private car, 2056

Data source: Transport modelling outputs supplied by Arup/IV, CIE.

Average time to a major activity centre via public transport increases as distance to inner Melbourne increases (chart 6.12). Differences across scenarios are relatively small, except in the Dispersed City, where additional congestion in the Melbourne New Growth Area leads to an increase of ~10 per cent in average time to access a major activity centre.<sup>26</sup>

6.12 Average time to a major activity centre via public transport, 2056



Data source: Transport modelling outputs supplied by Arup/IV, CIE.

<sup>26</sup> We expect this reflect the impact of congestion on bus travel time.

Accessibility to universities via public transport is largely similar across scenarios (chart 6.13). Time to access a university is somewhat higher in Scenarios that have greater development in Melbourne, potentially due to the effect of changes in congestion affecting bus travel times. For example, Scenario 1 has the longest time to access universities in inner and middle Melbourne. However, accessibility remains significantly better in Melbourne compared to regional areas.

Accessibility via public transport is poor for regional areas, however, we expect that access by car is more common for people located in these areas. Differences in accessibility for regional areas between scenarios largely reflects greater development in areas that have relatively lower accessibility, which increases the population-weighted average accessibility for regional areas.



#### 6.13 Average time to access a university via public transport, 2056

Note: The values in this chart are population-weighted averages across each region. Hence, changes in the measure reflect both changes in times due to congestion and changes in weights. The weighting process means that if more development occurs in areas with worse accessibility, the weighted average accessibility for a region will worsen even if travel times are unchanged. *Data source:* Transport modelling outputs supplied by Arup/IV, CIE.

The average time to access a hospital is low in Melbourne and similar across scenarios, except for the Melbourne New Growth Area (chart 6.14). In Regional Cities, average time is slightly higher in Scenarios 4 and 5, but there is little difference overall across scenarios.



#### 6.14 Average time to access a hospital emergency room via car, 2056

Note: The values in this chart are population-weighted averages across each region. Hence, changes in the measure reflect both changes in times due to congestion and changes in weights. The weighting process means that if more development occurs in areas with worse accessibility, the weighted average accessibility for a region will worsen even if travel times are unchanged. *Data source:* Transport modelling outputs supplied by Arup/IV, CIE.

As discussed in Appendix L, we use hedonic modelling to assess the impact of services on housing values. We find consistent evidence about the magnitude of these relationships. This is likely in part due to correlation between access to hospitals and universities and access to jobs. Accessibility to centres is even more correlated with jobs. As a result, while we expect that measuring the value impact of changes in job accessibility will capture some of the impact of changing access to services, we are unable to separately estimate the value of changing access to services.

# Estimates of the value of housing

#### Gross value of housing

We estimate that total WTP for housing is around \$140-150 billion in 2036 and \$260-300 billion in 2056, across scenarios (table 6.15). This represents the total value that residents of Victoria are willing to pay for all the housing provided under each scenario.

Total WTP for housing is relatively similar across scenarios in 2036, with the Compact City scenario having a \$9 billion higher WTP than the Distributed State scenario. By 2056, the gap in WTP is \$35 billion between the scenario with the highest WTP (Compact City) and that with the lowest (Distributed State). A higher total WTP of housing means that the housing provided is better aligned to the population's preferences for where they want to live and the type of dwellings they prefer. This suggests that housing provided in the Compact City scenario are more closely aligned with the housing types and locations that people value most highly.

Housing WTP is split into three main components:

The value of housing at the existing attributes of each place and type of housing,

- The impact of demand saturation, which captures the downward impact on WTP from more housing being provided than the amount demanded,<sup>27</sup> and
- The effect of accessibility changes, which are further split by mode and into separate components for the impact with and without network changes.

The largest component is WTP for housing at existing attributes of each place. However, this varies relatively little across scenarios.

By 2056, differences in the impact of accessibility and demand saturation are more influential, particularly in decreasing the value of the Distributed State scenario.

The impacts on accessibility from network upgrades are far smaller than the impact associated with changes to the distribution of people and jobs with the reference case network.

The Distributed State scenario involves a proportionally large increase in housing for regional towns and rural areas. Such an increase necessitates using sites within each SA2 that have less value for whatever reason and in targeting households that have weaker preferences for that location. The size of this effect is significantly amplified by responsiveness to price changes being especially weak in regional areas. This means that attributes of these areas would have to improve very significantly to make them the preferred place to live for such a large group of new residents.

<sup>27</sup> Note that these dwellings still each have positive WTP, but that the value at existing attributes will overstate that WTP due to the effect of demand saturation. Hence, the demand saturation adjustment captures the downward impact of the quantity of housing exceeding the amount demanded.

# 6.15 Undiscounted WTP for housing at 2036 and 2056

| Year            | Scenario | Value at existing<br>attributes | Impact of demand saturation | PV job access,<br>reference case<br>network | PT job access,<br>reference case<br>network | PV job access,<br>upgraded network | PT job access,<br>upgraded network | Sum of value |
|-----------------|----------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------------------|------------------------------------|------------------------------------|--------------|
|                 |          | \$b/year                        | \$b/year                    | \$b/year                                    | \$b/year                                    | \$b/year                           | \$b/year                           | \$b/year     |
| Total impact    |          |                                 |                             |                                             |                                             |                                    |                                    |              |
| 2036            | Sc 1     | 109                             | - 1                         | 16                                          | 23                                          | 0                                  | 0                                  | 148          |
|                 | Sc 2     | 108                             | 0                           | 15                                          | 22                                          | 0                                  | 0                                  | 144          |
|                 | Sc 3     | 107                             | 0                           | 14                                          | 21                                          | 0                                  | 0                                  | 141          |
|                 | Sc 4     | 107                             | 0                           | 15                                          | 19                                          | 0                                  | 0                                  | 140          |
|                 | Sc 5     | 106                             | - 1                         | 14                                          | 18                                          | 0                                  | 0                                  | 139          |
| Relative to Sc3 |          |                                 |                             |                                             |                                             |                                    |                                    |              |
| 2036            | Sc 1     | 3                               | 0                           | 2                                           | 2                                           | 0                                  | 0                                  | 6            |
|                 | Sc 2     | 1                               | 0                           | 1                                           | 1                                           | 0                                  | 0                                  | 3            |
|                 | Sc 3     | 0                               | 0                           | 0                                           | 0                                           | 0                                  | 0                                  | 0            |
|                 | Sc 4     | 0                               | 0                           | 0                                           | - 1                                         | 0                                  | 0                                  | - 1          |
|                 | Sc 5     | 0                               | 0                           | 0                                           | - 2                                         | 0                                  | 0                                  | - 3          |
| Total impact    |          |                                 |                             |                                             |                                             |                                    |                                    |              |
| 2056            | Sc 1     | 213                             | - 2                         | 27                                          | 57                                          | 0                                  | 1                                  | 296          |
|                 | Sc 2     | 212                             | 0                           | 24                                          | 53                                          | 0                                  | 2                                  | 291          |
|                 | Sc 3     | 211                             | - 1                         | 22                                          | 49                                          | 0                                  | 3                                  | 283          |
|                 | Sc 4     | 209                             | - 4                         | 23                                          | 45                                          | 0                                  | 1                                  | 273          |
|                 | Sc 5     | 209                             | - 9                         | 21                                          | 37                                          | 0                                  | 3                                  | 262          |
| Relative to Sc3 |          |                                 |                             |                                             |                                             |                                    |                                    |              |
| 2056            | Sc 1     | 2                               | - 1                         | 5                                           | 9                                           | 0                                  | - 2                                | 13           |
|                 | Sc 2     | 1                               | 1                           | 2                                           | 4                                           | 0                                  | - 1                                | 8            |
|                 | Sc 3     | 0                               | 0                           | 0                                           | 0                                           | 0                                  | 0                                  | 0            |
|                 | Sc 4     | - 2                             | - 3                         | 1                                           | - 4                                         | 0                                  | - 2                                | - 10         |
|                 | Sc 5     | - 2                             | - 7                         | - 1                                         | - 11                                        | 0                                  | - 1                                | - 22         |

72

Economic, social, and environmental impacts of alternative urban development scenarios for Victoria

Source: CIE.

#### Net value of housing

In order to estimate the value of housing net of costs of construction, we need to estimate the present value of housing services. This is because construction costs occur up-front for a dwelling, while the value accrued by the dwelling is calculated as a stream of annual value (i.e. rents).<sup>28</sup> The present value of housing services can be estimated by applying a discount rate. We use a discount rate of 3 per cent (real), which reflects the implicit discount rate that buyers would need to have in order for sales prices and the present value of future rents to be aligned.<sup>29</sup>

The undiscounted value of housing, net of construction costs, is shown over time in chart 6.16. This applies a simple linear time profile to construction costs, which implicitly assumes that the same number of dwellings are constructed each year between 2021 and 2036, and then between 2036 and 2056. The value of each dwelling starts accruing once it is constructed.



#### 6.16 Time profile of the net value of housing

Note: The net value of housing is negative in early years because the stock of new homes constructed is small relative to the number of homes being constructed, which results in net value (i.e. WTP for new dwellings minus construction costs) being negative. Data source: CIF

The discounted value of housing (i.e. WTP minus dwelling costs) is shown in table 6.17. Note that the opportunity cost of land is lower in scenarios with less greenfield development (e.g. Scenario 1), since we assume there is no additional land take for infill development.

\_economic\_evaluation\_pic\_2.pdf?YI2OKoda1ZmXFIXYZH3cXVDJurKoxcM.

 $<sup>^{28}</sup>$  An alternative approach would be to estimate the sale price of each dwelling at the time of construction, but this would make it very complicated to account for future changes in attributes of a place post-construction, such as improved accessibility.

<sup>&</sup>lt;sup>29</sup> This is consistent with rates of rental yield observed in PropTrack data, as discussed in Appendix L. It is also consistent with the assumption made in previous work, such as The CIE (2020) Western Sydney Place-based Infrastructure Compact, available at: https://gsc-public-1.s3-apsoutheast-2.amazonaws.com/s3fs-public/appendix\_6\_-

| Year     | Scenario | Value at<br>existing<br>attributes | Impact of<br>demand<br>saturation | PV job access,<br>reference case<br>network | PT job access,<br>reference case<br>network | PV job access,<br>upgraded<br>network | PT job access,<br>upgraded<br>network | Sum of<br>value | Dwelling<br>construction<br>costs | Opportunity<br>cost of land | Total<br>dwelling<br>cost | Net<br>value |
|----------|----------|------------------------------------|-----------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------|-----------------|-----------------------------------|-----------------------------|---------------------------|--------------|
|          |          | \$b/year                           | \$b/year                          | \$b/year                                    | \$b/year                                    | \$b/year                              | \$b/year                              | \$b/year        |                                   |                             |                           |              |
| Total im | pact     |                                    |                                   |                                             |                                             |                                       |                                       |                 |                                   |                             |                           |              |
| 2021-    | Sc 1     | 647                                | - 4                               | 95                                          | 137                                         | 0                                     | 0                                     | 876             | 332                               | 1                           | 333                       | 543          |
| 2036     | Sc 2     | 638                                | 0                                 | 89                                          | 129                                         | 0                                     | 0                                     | 856             | 322                               | 1                           | 324                       | 533          |
|          | Sc 3     | 632                                | - 1                               | 84                                          | 123                                         | 0                                     | 0                                     | 838             | 308                               | 1                           | 310                       | 528          |
|          | Sc 4     | 632                                | - 3                               | 86                                          | 114                                         | 0                                     | 0                                     | 829             | 308                               | 1                           | 309                       | 520          |
|          | Sc 5     | 631                                | - 3                               | 86                                          | 109                                         | 0                                     | 0                                     | 822             | 303                               | 1                           | 304                       | 518          |
| Relative | e to Sc3 |                                    |                                   |                                             |                                             |                                       |                                       |                 |                                   |                             |                           |              |
| 2021-    | Sc 1     | 15                                 | - 3                               | 11                                          | 14                                          | 0                                     | 0                                     | 38              | 24                                | - 1                         | 24                        | 14           |
| 2036     | Sc 2     | 6                                  | 1                                 | 5                                           | 7                                           | 0                                     | 0                                     | 18              | 14                                | 0                           | 14                        | 5            |
|          | Sc 3     | 0                                  | 0                                 | 0                                           | 0                                           | 0                                     | 0                                     | 0               | 0                                 | 0                           | 0                         | 0            |
|          | Sc 4     | 0                                  | - 2                               | 2                                           | - 9                                         | 0                                     | 0                                     | - 9             | 0                                 | 0                           | 0                         | - 8          |
|          | Sc 5     | - 1                                | - 2                               | 2                                           | - 14                                        | 0                                     | 0                                     | - 16            | - 5                               | 0                           | - 5                       | - 11         |
| Total im | pact     |                                    |                                   |                                             |                                             |                                       |                                       |                 |                                   |                             |                           |              |
| 2037-    | Sc 1     | 1 516                              | - 14                              | 204                                         | 376                                         | - 1                                   | 6                                     | 2 087           | 330                               | 1                           | 331                       | 1756         |
| 2056     | Sc 2     | 1 501                              | - 1                               | 186                                         | 351                                         | - 1                                   | 10                                    | 2 046           | 333                               | 1                           | 334                       | 1712         |
|          | Sc 3     | 1 493                              | - 8                               | 171                                         | 325                                         | 0                                     | 14                                    | 1 996           | 330                               | 1                           | 331                       | 1 665        |
|          | Sc 4     | 1 483                              | - 22                              | 175                                         | 299                                         | 1                                     | 6                                     | 1942            | 323                               | 1                           | 324                       | 1 618        |
|          | Sc 5     | 1 484                              | - 44                              | 168                                         | 262                                         | 1                                     | 11                                    | 1 883           | 313                               | 1                           | 314                       | 1 569        |

## 6.17 Discounted net value of housing across all years

74

| Year     | Scenario | Value at<br>existing<br>attributes | Impact of<br>demand<br>saturation | PV job access,<br>reference case<br>network | PT job access,<br>reference case<br>network | PV job access,<br>upgraded<br>network | PT job access,<br>upgraded<br>network | Sum of<br>value | Dwelling<br>construction<br>costs | Opportunity<br>cost of land | Total<br>dwelling<br>cost | Net<br>value |
|----------|----------|------------------------------------|-----------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------|-----------------|-----------------------------------|-----------------------------|---------------------------|--------------|
|          |          | \$b/year                           | \$b/year                          | \$b/year                                    | \$b/year                                    | \$b/year                              | \$b/year                              | \$b/year        |                                   |                             |                           |              |
| Relative | to Sc3   |                                    |                                   |                                             |                                             |                                       |                                       |                 |                                   |                             |                           |              |
| 2037-    | Sc 1     | 23                                 | - 6                               | 33                                          | 51                                          | - 1                                   | - 8                                   | 91              | 1                                 | - 1                         | 0                         | 91           |
| 2056     | Sc 2     | 8                                  | 7                                 | 15                                          | 26                                          | - 1                                   | - 4                                   | 50              | 3                                 | 0                           | 3                         | 47           |
|          | Sc 3     | 0                                  | 0                                 | 0                                           | 0                                           | 0                                     | 0                                     | 0               | 0                                 | 0                           | 0                         | 0            |
|          | Sc 4     | - 10                               | - 14                              | 4                                           | - 27                                        | 0                                     | - 9                                   | - 54            | - 7                               | 0                           | - 7                       | - 47         |
|          | Sc 5     | - 10                               | - 36                              | - 3                                         | - 63                                        | 1                                     | - 3                                   | - 113           | - 17                              | 0                           | - 17                      | - 96         |
| Total im | pact     |                                    |                                   |                                             |                                             |                                       |                                       |                 |                                   |                             |                           |              |
| All      | Sc 1     | 2 163                              | - 18                              | 299                                         | 513                                         | - 1                                   | 6                                     | 2 963           | 663                               | 1                           | 664                       | 2 299        |
| years    | Sc 2     | 2 139                              | - 1                               | 274                                         | 481                                         | - 1                                   | 10                                    | 2 902           | 655                               | 2                           | 657                       | 2 245        |
|          | Sc 3     | 2 125                              | - 9                               | 255                                         | 448                                         | 0                                     | 14                                    | 2 834           | 638                               | 3                           | 640                       | 2 193        |
|          | Sc 4     | 2 115                              | - 24                              | 261                                         | 413                                         | 1                                     | 6                                     | 2 771           | 631                               | 3                           | 633                       | 2 138        |
|          | Sc 5     | 2 115                              | - 47                              | 253                                         | 371                                         | 1                                     | 11                                    | 2 705           | 616                               | 3                           | 618                       | 2 087        |
| Relative | to Sc3   |                                    |                                   |                                             |                                             |                                       |                                       |                 |                                   |                             |                           |              |
| All      | Sc 1     | 38                                 | - 9                               | 45                                          | 65                                          | - 1                                   | - 8                                   | 129             | 25                                | - 1                         | 24                        | 105          |
| years    | Sc 2     | 14                                 | 8                                 | 20                                          | 33                                          | - 1                                   | - 4                                   | 69              | 18                                | - 1                         | 17                        | 52           |
|          | Sc 3     | 0                                  | 0                                 | 0                                           | 0                                           | 0                                     | 0                                     | 0               | 0                                 | 0                           | 0                         | 0            |
|          | Sc 4     | - 10                               | - 16                              | 7                                           | - 35                                        | 0                                     | - 9                                   | - 63            | - 7                               | 0                           | - 7                       | - 55         |
|          | Sc 5     | - 11                               | - 38                              | - 1                                         | - 77                                        | 1                                     | - 3                                   | - 129           | - 22                              | 0                           | - 22                      | - 107        |

Source: CIE.

www.TheCIE.com.au

#### Annual WTP per dwelling

Annual WTP per dwelling for the Compact City and Distributed State scenarios are shown in tables 6.18 and 6.19, respectively.

Annual WTP per dwelling can be thought of as the implied rent per dwelling, which represents the value that residents derive or how much they are willing to pay to live there. This value combines the value of dwellings at existing attributes plus the impact of changes in accessibility and demand saturation.

WTP per dwelling is highest for detached dwellings in Inner Melbourne, followed by Middle Melbourne. WTP in inner and middle Melbourne is significantly higher than in other parts of Victoria, with WTP being more than twice as high as in regional areas.

At a state-wide level, high-rise apartments have a higher WTP per dwelling in 2036 compared to other dwelling types. This is because high-rise apartments are more commonly located in inner and middle Melbourne, where demand is higher. By 2056, separate houses have a higher WTP per dwelling, reflecting a higher assumed growth rate of WTP for houses compared to apartments.<sup>30</sup>

WTP per dwelling across all of Victoria is lower in Scenario 5 (\$56 061) compared to Scenario 1 (\$63 537). This reflects:

- more dwellings being in regional areas, for which people have a lower WTP per dwelling, and
- worse accessibility outcomes in the Distributed State scenario compared to the Compact City.

Annual WTP per dwelling for separate houses in regional centres and rural areas is significantly lower under Scenario 5 compared to Scenario 1 at 2056. This reflects a combination of worse accessibility outcomes and the demand saturation effect. More intense regional development in Scenario 5 necessitates using sites that have less value for whatever reason and in targeting households that have weaker preferences for living in regional areas.

A demand saturation effect will also be present for inner Melbourne apartments, whereby intense development necessitates targeting households that have weaker preferences for apartments in inner Melbourne. However, demand for housing is more price-responsive in Melbourne, which means the size of this effect is smaller. The value of apartments in inner Melbourne is higher in Scenario 1 compared to Scenario 5, suggesting the impact of improved accessibility outweighs the demand saturation effect.

<sup>&</sup>lt;sup>30</sup> A higher growth rate in WTP for houses compared to apartments is consistent with historical growth. Our assumed growth rates of WTP are shown in Appendix L.

| Region                           | Separate house   | Attached         | Low rise apartments | Medium rise apartments | High rise apartments | Other            | All dwelling types |
|----------------------------------|------------------|------------------|---------------------|------------------------|----------------------|------------------|--------------------|
|                                  | \$/dwelling/year | \$/dwelling/year | \$/dwelling/year    | \$/dwelling/year       | \$/dwelling/year     | \$/dwelling/year | \$/dwelling/year   |
| Value at 2036                    |                  |                  |                     |                        |                      |                  |                    |
| Inner Melbourne                  | 103 344          | 63 465           | 46 445              | 46 798                 | 50 218               | 100 827          | 56 979             |
| Middle Melbourne                 | 67 732           | 47 955           | 42 032              | 42 250                 | 42 028               | 70 767           | 57 047             |
| Outer Melbourne                  | 39 073           | 32 357           | 33 596              | 34 056                 | 33 878               | 35 622           | 37 606             |
| Melbourne new growth area        | 32 158           | 26 447           | 29 203              | 28 655                 |                      | 30 186           | 31 710             |
| Regional City                    | 23 734           | 24 013           | 24 594              | 28 249                 | 25 991               | 20 753           | 23 817             |
| Regional Centres and Rural Areas | 22 776           | 24 931           | 25 181              | 27 082                 | 25 029               | 18 131           | 22 882             |
| All regions                      | 39 580           | 43 530           | 41 809              | 44 156                 | 49 110               | 39 867           | 41 296             |
| Value at 2056                    |                  |                  |                     |                        |                      |                  |                    |
| Inner Melbourne                  | 187 916          | 99 749           | 61 889              | 61 924                 | 64 775               | 168 983          | 75 169             |
| Middle Melbourne                 | 119 214          | 74 664           | 55 257              | 55 036                 | 53 191               | 116 540          | 84 303             |
| Outer Melbourne                  | 67 892           | 49 826           | 44 235              | 44 764                 | 44 283               | 56 887           | 61 560             |
| Melbourne new growth area        | 55 068           | 40 041           | 38 232              | 37 253                 |                      | 47 750           | 53 695             |
| Regional City                    | 39 603           | 35 591           | 32 355              | 38 608                 | 32 763               | 32 148           | 38 653             |
| Regional Centres and Rural Areas | 38 737           | 36 402           | 32 108              | 34 695                 | 28 148               | 28 230           | 38 388             |
| All regions                      | 65 119           | 66 489           | 54 725              | 57 670                 | 62 635               | 61 690           | 63 537             |

### 6.18 Scenario 1 housing impacts by region and dwelling type

Note: There are zero high rise apartments in the Melbourne new growth area, and few in regional areas.

Source: CIE.

| 6.19 Scen | ario 5 | housing | impacts | by region | and dwelling type |
|-----------|--------|---------|---------|-----------|-------------------|
|-----------|--------|---------|---------|-----------|-------------------|

| Region                           | Separate house   | Attached         | Low rise apartments | Medium rise apartments | High rise apartments | Other            | All dwelling types |
|----------------------------------|------------------|------------------|---------------------|------------------------|----------------------|------------------|--------------------|
|                                  | \$/dwelling/year | \$/dwelling/year | \$/dwelling/year    | \$/dwelling/year       | \$/dwelling/year     | \$/dwelling/year | \$/dwelling/year   |
| Value at 2036                    |                  |                  |                     |                        |                      |                  |                    |
| Inner Melbourne                  | 100 043          | 61 496           | 47 105              | 47 332                 | 50 255               | 96 943           | 59 933             |
| Middle Melbourne                 | 65 015           | 46 233           | 41 393              | 41 636                 | 41 151               | 67 632           | 56 081             |
| Outer Melbourne                  | 37 622           | 31 260           | 32 986              | 33 396                 | 33 261               | 34 447           | 36 233             |
| Melbourne new growth area        | 30 900           | 25 573           | 28 587              | 28 010                 |                      | 28 809           | 30 484             |
| Regional City                    | 23 108           | 23 551           | 24 224              | 29 031                 | 25 863               | 20 401           | 23 262             |
| Regional Centres and Rural Areas | 22 156           | 24 073           | 25 051              | 26 302                 | 25 875               | 17 841           | 22 273             |
| All regions                      | 37 442           | 39 946           | 40 752              | 43 181                 | 48 504               | 38 198           | 38 753             |
| Value at 2056                    |                  |                  |                     |                        |                      |                  |                    |
| Inner Melbourne                  | 170 746          | 91 847           | 61 685              | 61 847                 | 64 270               | 153 367          | 83 114             |
| Middle Melbourne                 | 110 873          | 68 928           | 53 663              | 53 445                 | 51 625               | 106 732          | 86 325             |
| Outer Melbourne                  | 63 404           | 46 650           | 42 848              | 43 286                 | 42 824               | 53 100           | 57 738             |
| Melbourne new growth area        | 51 803           | 37 829           | 37 154              | 36 338                 |                      | 44 403           | 50 534             |
| Regional City                    | 36 901           | 32 707           | 31 062              | 38 274                 | 33 028               | 30 133           | 35 809             |
| Regional Centres and Rural Areas | 32 678           | 29 259           | 30 665              | 32 730                 | 31 620               | 22 898           | 32 351             |
| All regions                      | 56 475           | 55 520           | 50 982              | 54 596                 | 61 104               | 51 429           | 56 061             |

Note: There are zero high rise apartments in the Melbourne new growth area, and few in regional areas.

Source: CIE.

# 7 Economic impacts

Under economic impacts, we focus on indicators that will flow through to how much income Victorians have. Spatial scenarios can influence income through two mechanisms:

- productivity where scenarios allow businesses to produce more output using the same (or fewer) inputs, which will flow through to higher incomes. There are two main theories that can be used to consider how a spatial direction impacts on productivity:
  - the first is that land and non-residential property markets are a good indicator of where businesses can be most productive. For example, a high industrial land value, such as around Port of Melbourne, reflects that businesses will face lower costs (need fewer inputs) in order to undertake production. This is because it may have lower transport costs to move goods between businesses and end users
  - the second is theories of agglomeration. These theories are based on businesses becoming more productive when they are close together. In theory, this is additional to what is measured above, however, in practice measurement of agglomeration overlaps with how land values reflect business productivity
- employment the level of employment reflects the number of people who participate in the labour force less the share that are unemployed. If some scenarios make jobs more accessible, then this will tend to increase employment. In turn, higher employment will lead to higher household incomes.

The combination of the economic impacts above will lead to changes in average household incomes. That is, if people are working more in more productive locations, then on average their incomes should be higher.

Note that income is not a metric of welfare, as would be used in a cost benefit analysis. This is because additional work hours have an opportunity cost of the time used for work, which would need to be accounted for if it was to be a welfare calculation.

The total impacts on income and per person impacts are shown in table 7.1. Note that agglomeration impacts are shown but are not added to totals as they overlap with the business location productivity estimates. The compact city is estimated to have a positive impact on incomes of  $\sim$ \$5 000 per person over the period 2021 to 2056, or about \$150 per person per year, relative to the dispersed city scenario. The consolidated city has an estimated positive income impact of \$1 688 per person compared to the dispersed city. The network of cities has a marginal negative income impact relative to the dispersed city scenario. The dispersed city scenario. The dispersed city scenario has a \$1 310 per person income impact relative to the dispersed city to the dispersed city scenario.

| Item                            | Sc1          | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|---------------------------------|--------------|----------------------|-------------------|----------------------|----------------------|
|                                 | Compact City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                 | \$m          | \$m                  | \$m               | \$m                  | \$m                  |
| Aggregated across Victoria      |              |                      |                   |                      |                      |
| Business location productivity  | 30 814       | 8 988                | 0                 | - 629                | -8 222               |
| Agglomeration                   | 19 687       | 12 333               | 0                 | -1 773               | -15 454              |
| Employment impacts              | 12 130       | 4 992                | 0                 | 170                  | -2 629               |
| Total (excluding agglomeration) | 42 944       | 13 980               | 0                 | - 460                | -10 852              |
|                                 | \$/person    | \$/person            | \$/person         | \$/person            | \$/person            |
| Per person                      |              |                      |                   |                      |                      |
| Business location productivity  | 3 721        | 1 085                | 0                 | - 76                 | - 993                |
| Agglomeration                   | 2 377        | 1 489                | 0                 | - 214                | -1 866               |
| Employment impacts              | 1 465        | 603                  | 0                 | 21                   | - 317                |
| Total (excluding agglomeration) | 5 185        | 1 688                | 0                 | - 55                 | -1 310               |

#### 7.1 Impacts on income in total and per person

Source: CIE.

These alternative channels through which urban development scenarios impact on income are discussed below, alongside key assumptions and measured impacts for each of the scenarios.

# **Business location productivity**

#### Measurement approach

The value for business of expansions in particular locations is conceptually similar to that for households. A scenario that provides business with space where it is both more valuable and less costly will be preferred on this measure. Key pieces of this are:

- The amount that businesses are willing to pay for sites or to lease spaces represents the willingness to pay for space of a given type.
- The cost of producing this space includes:
  - the opportunity cost of land and capital (the value of what it would be used for in its existing use)
  - the cost of demolishing existing activities and building new space

The private value created is the willingness to pay less the cost.

The data and assumptions used to estimate the above are shown in table 7.2 and set out in detail in Appendix M.

| ltem                                                                                                  | Data source                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current willingness to pay for space (per m2 of space)                                                | Lease or sale rates for commercial, industrial and retail<br>space across Victoria. We have used a range of reports<br>from commercial real estate companies setting out net<br>lease rates for different areas of Melbourne and for<br>different product types (grades for commercial,<br>industrial, retail).<br>We have cross-checked against land valuer general<br>valuations where possible. |
| Cost of construction by space type                                                                    | CIE previous benchmarks, escalated to 2022 dollars.<br>This has been tested against data from the Victorian<br>Building Authority<br>https://www.vba.vic.gov.au/about/data.                                                                                                                                                                                                                        |
| Opportunity cost of sites                                                                             | The opportunity cost of a site is the value of its existing<br>use. This is conceptually the value of the site, which<br>comprises the value of the building and land. This is<br>sourced from the Victorian Valuer General data for each<br>local government area.                                                                                                                                |
| Space required for each scenario (m2)                                                                 | The scenarios provide job estimates. Space estimates<br>have been developed based on benchmarks of space<br>per job, which are the same across areas and scenarios.<br>Note that in practice, space will vary depending on price.                                                                                                                                                                  |
| Changes in willingness to pay exogenous to the scenarios                                              | The central case would be to apply no change to spatial preferences.<br>As part of testing states of the world we have considered changes that would change the rank order of scenarios.                                                                                                                                                                                                           |
| Changes in willingness to pay that are part of the scenarios (eg changes in access to labour markets) | The transport modelling has been used to generate<br>metrics for accessibility to labour force and accessibility<br>to other businesses. These are factored into willingness<br>to pay through previous hedonic modelling.                                                                                                                                                                         |

#### 7.2 Measuring business location productivity impacts

Source: CIE.

In addition to the business location productivity impacts, alternative business locations can have other impacts, such as:

- transport impacts measured in the transport analysis and also impacting on calculated accessibility
- agglomeration impacts businesses located closer together can lead to knowledge spilling over, for example, or other productivity spillovers. This is discussed further below, but is likely to overlap with business location productivity estimates
- negative localised effects, such as noise or pollution impacts for some types of businesses. These are too specific to be measured in alternative strategic spatial scenarios.

#### **Outcomes**

The highest business productivity impacts are estimated for more compact scenarios and lowest impacts for more dispersed and regional scenarios (table 7.3). This reflects:

- a higher value of new space in areas closer to inner Melbourne, particularly commercial space
- more positive accessibility impacts for more compact scenarios, which impacts on existing space and new space.

The compact city has a \$30.8 billion positive impact from space constructed from 2021 to 2056 compared to the dispersed city scenario. The consolidated city has a positive \$9 billion impact. The Network of Cities scenario has a negative impact of \$0.6 billion and distributed state has a negative impact of \$8.4 billion.

Note that unlike for housing development, we have not included any effects from having too much non-residential space in a particular location. An example would be where continued expansion of industrial space had lower and lower value for additional businesses. Most evidence on valuations for non-residential land suggests the opposite effect — agglomeration of activities leads to higher demand. Clearly, for some types of activity, such as local serving retail space, there will be only so much space required before this is less needed. The scenario construction is based on population serving activities moving with scenarios, so we do not need to be concerned about this issue with activity serving the local population.

|                                      | Sc1             | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|--------------------------------------|-----------------|----------------------|-------------------|----------------------|----------------------|
|                                      | Compact<br>City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                      | \$m             | \$m                  | \$m               | \$m                  | \$m                  |
| 2036                                 |                 |                      |                   |                      |                      |
| Total value                          |                 |                      |                   |                      |                      |
| value of new space at current prices | 9 692           | 6 649                | 5 145             | 4 576                | 3 815                |
| change in value of existing space    | 34 339          | 31 954               | 30 748            | 30 934               | 30 861               |
| change in prices for new space       | 6 951           | 6 139                | 5 713             | 5 878                | 5 774                |
| total 2036                           | 50 981          | 44 742               | 41 607            | 41 388               | 40 451               |
| Difference to dispersed city         | 9 375           | 3 135                | 0                 | - 219                | -1 156               |
| 2056                                 |                 |                      |                   |                      |                      |
| Total value                          |                 |                      |                   |                      |                      |
| value of new space at current prices | 13 050          | 9 000                | 5 709             | 6 154                | 2 919                |
| change in value of existing space    | 86 770          | 80 535               | 79 662            | 79 000               | 77 705               |
| change in prices for new space       | 42 549          | 37 248               | 35 559            | 35 365               | 33 240               |
| total 2056                           | 142 369         | 126 783              | 120 930           | 120 520              | 113 864              |
| Difference to dispersed city         | 21 439          | 5 852                | 0                 | - 410                | -7 066               |
| All years                            |                 |                      |                   |                      |                      |
| Total value all years                | 193 351         | 171 525              | 162 537           | 161 908              | 154 315              |
| Difference to dispersed city         | 30 814          | 8 988                | 0                 | - 629                | -8 222               |

#### 7.3 Estimated business location productivity impacts

Note: These are undiscounted values.

Source: CIE.

# **Employment** impacts

#### Current labour force participation and employment patterns

Employment outcomes are dramatically different across parts of Melbourne and Victoria. Total employment outcomes are a combination of whether someone is participating in the labour force and, if so, whether they are able to find a job.

- Labour force participation, as measured by the share of working aged people who are in employment or are seeking employment, is lower in many of the regional areas of Victoria (chart 7.4). Within Melbourne, labour force participation is lowest in fringe areas and highest in middle areas (chart 7.5). This likely reflects affordability pushing people and families with lower participation rates to the fringe, then exacerbated by a lack of access to jobs making it more difficult to enter employment
- Unemployment rates follow a very similar pattern within Melbourne. However, outside of Melbourne unemployment rates are relatively low, for the smaller share of the population that is typically participating in the labour force (chart 7.6).



#### 7.4 Victoria labour force participation 2021

Note: All ranges are selected so that there are an equal number of SA2s in each category. *Data source:* ABS Census data.



#### 7.5 Melbourne labour force participation 2021

Note: All ranges are selected so that there are an equal number of SA2s in each category. *Data source:* ABS Census data.



### 7.6 Victoria unemployment rate 2021

Note: All ranges are selected so that there are an equal number of SA2s in each category. *Data source:* ABS Census data.

# Unemployment rate 0 - 3.1 3.1 - 3.6 3.6 - 4.01 4.01 - 4.4 4.4 - 5 5.5 - 5.8 5.8 - 6.96 6.96 - 12.9 0 - 12.9

#### 7.7 Melbourne unemployment rate 2021

Note: All ranges are selected so that there are an equal number of SA2s in each category Data source: ABS Census data

We can also examine labour market outcomes relative to the calculated measures of accessibility to jobs. Some of the areas with the lowest employment rates are on the fringe of Melbourne where accessibility to jobs is moderate (chart 7.8 shows access by car and chart 7.9 shows access by public transport). Areas with the highest accessibility to jobs do have higher employment rates in general, but there is a lot of variation and accessibility is clearly not the major driver of employment rates.



#### 7.8 Employment rate for 15-64 year olds and accessibility to jobs by car 2021

Note: Each data point is an SA2 area in Victoria.

Data source: The CIE, based on transport accessibility metrics aggregated by travel zone for 2018 and ABS Census labour force data by place of usual residence for 2021.



# 7.9 Employment rate for 15-64 year olds and accessibility to jobs by public transport 2021

Note: Each data point is an SA2 area in Victoria.

Data source: The CIE, based on transport accessibility metrics aggregated by travel zone for 2018 and ABS Census labour force data by place of usual residence for 2021.

#### Measurement approach

The relationship between accessibility to employment and labour market outcomes is not straight forward. It does generally appear that less accessible areas have lower employment levels. In 2020, Baastiaanssen et al conducted a meta-analysis of studies on

transport and employment.<sup>31</sup> They find that there is a (statistically) significant positive association, even where studies are able to address issues related to endogeneity. They report findings related to car ownership and commute times, but have also reviewed studies related to accessibility. They do not include the latter in the formal meta-analysis because the measures of accessibility are different across studies.

Other studies have found participation effects are particularly strong for women.<sup>32 33</sup>

There are not generally consistent approaches to considering employment impacts from accessibility of transport improvements in Australia. The most used is the Australian Transport Assessment and Planning framework for wider economic benefits, specifically for labour market impacts.<sup>34</sup> This is based on a 1 per cent increase in the net return from working leading to a 0.18 percentage point increase in labour force participation. This method is constructed for a transport project that changes generalised costs rather than a land use strategy that changes where people live and work.

Many of the studies of accessibility and employment have difficulty in addressing causality. That is, people locate in more accessible places who are more likely to be employed. A 2011 US study used redundancies as a random event to consider how rapidly redundant workers found new jobs, and new jobs at a similar wage rate.<sup>35</sup> They found improvement in job accessibility reduced job search duration.

A caveat on all the studies is that there have been very significant changes in working arrangements in some industries following Covid-19. These are likely to have weakened the links between accessibility and employment, compared to pre-Covid-19. This is more likely to be relevant for accessibility impacts on higher skilled female workforce participation as opposed to accessibility impacts on lower skilled disadvantaged people's participation.

Note that there is substantial uncertainty about the pattern of impacts and the extent to which employment impacts depend on absolute versus relative access to employment, and the applicability of these findings to Melbourne. Given the patterns of labour force participation and unemployment, it is reasonable that the greatest gains would be made to improving access in more disadvantaged areas, as that is where the largest amount of

<sup>&</sup>lt;sup>31</sup> Bastiaanssen, J, Johnson, D and Lucas, K (2020), "Does transport help people to gain employment? A systematic review and meta-analysis of the empirical evidence", Transport Reviews, 40 (5). pp. 607-628, https://doi.org/10.1080/01441647.2020.1747569.

<sup>&</sup>lt;sup>32</sup> Matas A, Raymond J-L, Roig J-L 2010, Job Accessibility and Female Employment Probability: The Cases of Barcelona and Madrid, Urban Studies, vol. 47, no. 4, pp. 769-787, April 2010.

<sup>&</sup>lt;sup>33</sup> Gilfillan G and Andrews L 2010, *Labour Force Participation of Women Over 45*, Productivity Commission Staff Working Paper, Canberra.

<sup>34</sup> ATAP, Wider Economic Benefits, https://www.atap.gov.au/tools-techniques/widereconomic-benefits.

<sup>&</sup>lt;sup>35</sup> Andersson, Fredrik, John Haltiwanger, Mark Kutzbach, Henry Pollakowski, and Daniel Weinberg. 2011. "Job Displacement and the Duration of Joblessness: The Role of Spatial Mismatch." Working paper.

underutilised labour is. That has also been the focus of the literature, as set out in Baastiaanssen et al (2020).<sup>36</sup>

While the evidence does suggest accessibility improvements will increase employment, it is also clear that it is only a small driver of labour force participation outcomes. There will be many other factors, such as education and skills, that are likely to be much more important in determining differences in participation and employment.

To develop estimates of the value of accessibility changes in terms of employment outcomes, we adopt a simple approach that reflects the evidence from the literature and existing Australian frameworks:

- overall accessibility to jobs metrics for a scenario are calculated for car and public transport for 2036 and 2056
  - these are the average accessibility to jobs faced by people of working age across Victoria
  - these are weighted by the work share of trips made by car and public transport respectively in the reference case
- the percentage change to accessibility today is estimated for each spatial scenario
- the percentage change in accessibility is converted to a percentage change in net returns from working, as follows:
  - it is assumed that the percentage change in accessibility will translate into an equal percentage change in generalised costs of transport
  - transport costs (including travel time and costs) are estimated to average 7 per cent of gross wages on average
  - the percentage change in net returns is then estimated as the percentage change in accessibility multiplied by 7 per cent
- the percentage change in net returns is multiplied by 0.18 to give a percentage point change in labour force participation, based on the ATAP parameter<sup>37</sup>
- the dollar value of the change in labour force participation is then estimated as the average Victorian wage multiplied by ATAP factors for additional participants to be have lower typical wages multiplied by the percentage point change in labour force participation multiplied by the working age population.
  - The ATAP approach assumed a marginal worker will typically work 70 per cent of the hours of an average worker and at a wage of 80 per cent of that of an average worker. This gives an overall annual wage of 56 per cent of average for additional people employed.

<sup>&</sup>lt;sup>36</sup> Bastiaanssen, J, Johnson, D and Lucas, K (2020), "Does transport help people to gain employment? A systematic review and meta-analysis of the empirical evidence", Transport Reviews, 40 (5). pp. 607-628, https://doi.org/10.1080/01441647.2020.1747569.

<sup>37</sup> ATAP, Wider Economic Benefits, https://www.atap.gov.au/tools-techniques/widereconomic-benefits.

#### **Outcomes**

The estimated changes in labour force participation and how that would flow through into additional income is set out in table 7.10. Labour force participation is estimated to be highest in the Compact City scenario, because it has substantially higher accessibility to jobs through both public transport and private vehicle than other scenarios.

|                         | Sc1                  | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|-------------------------|----------------------|----------------------|-------------------|----------------------|----------------------|
|                         | Compact City         | Consolidated<br>City | Dispersed City    | Network of<br>Cities | Distributed<br>State |
|                         | Index                | Index                | Index             | Index                | Index                |
| 2036 accessibility metr | rics relative to 202 | 1                    |                   |                      |                      |
| Car                     | 145.5                | 137.7                | 132.0             | 133.5                | 132.7                |
| Public transport        | 154.1                | 146.2                | 140.1             | 137.8                | 134.9                |
| Weighted average        | 146.3                | 138.5                | 132.8             | 134.0                | 132.9                |
| 2056 accessibility metr | rics relative to 202 | 1                    |                   |                      |                      |
| Car                     | 178.6                | 164.4                | 155.4             | 155.2                | 147.6                |
| Public transport        | 217.7                | 202.3                | 185.0             | 175.9                | 160.1                |
| Weighted average        | 182.5                | 168.2                | 158.3             | 157.2                | 148.8                |
|                         | Per cent             | Per cent             | Per cent          | Per cent             | Per cent             |
| Weighted difference to  | Dispersed City       |                      |                   |                      |                      |
| 2036                    | 10.2                 | 4.3                  | 0.0               | 0.9                  | 0.1                  |
| 2056                    | 15.2                 | 6.2                  | 0.0               | -0.6                 | -5.9                 |
|                         | Percentage points    | Percentage points    | Percentage points | Percentage points    | Percentage points    |
| Change in labour force  | participation        |                      |                   |                      |                      |
| 2036                    | 0.13                 | 0.05                 | 0.00              | 0.01                 | 0.00                 |
| 2056                    | 0.19                 | 0.08                 | 0.00              | -0.01                | -0.07                |
|                         | \$m/year             | \$m/year             | \$m/year          | \$m/year             | \$m/year             |
| Income from additional  | labour force partic  | cipation             |                   |                      |                      |
| 2036                    | 303                  | 128                  | 0                 | 27                   | 3                    |
| 2056                    | 697                  | 282                  | 0                 | -28                  | -268                 |
| Total all years         | \$m                  | \$m                  | \$m               | \$m                  | \$m                  |
| All years to 2056       | 12 130               | 4 992                | 0                 | 170                  | -2 629               |

#### 7.10 Labour force participation impacts from scenarios

Source: CIE.

# Agglomeration

We have also measured agglomeration impacts associated with scenarios, although noting that this potentially overlaps with what is being measured in business location productivity. Australian Transport Assessment and Planning (ATAP) has guidelines for measuring agglomeration impacts.<sup>38</sup> The underlying changes in effective job density are calculated using the transport modelling results. The agglomeration elasticities the ATAP are applied to these to develop agglomeration impacts.

The estimated agglomeration impacts align closely with the business location productivity impacts (table 7.11).

- The Compact City scenario has the greater positive agglomeration impacts, estimated at almost \$20 billion higher than the Dispersed City scenario. This reflects negative impacts from travel time, which are more than outweighed from positive impacts from jobs being in closer proximity.
- The Distributed State scenario has the most negative agglomeration impacts, at \$15 billion less than the Dispersed City scenario.

| Item                        | Sc1          | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|-----------------------------|--------------|----------------------|-------------------|----------------------|----------------------|
|                             | Compact City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                             | \$m/year     | \$m/year             | \$m/year          | \$m/year             | \$m/year             |
| 2036                        | 419          | 264                  | 0                 | 4                    | - 230                |
| from changes to travel time | - 63         | - 57                 | 0                 | 127                  | 204                  |
| from changes to land use    | 482          | 320                  | 0                 | - 123                | - 434                |
| 2056                        | 1 235        | 772                  | 0                 | - 185                | -1 143               |
| from changes to travel time | - 93         | - 214                | 0                 | 40                   | 340                  |
| from changes to land use    | 1 329        | 986                  | 0                 | - 225                | -1 483               |
|                             | \$m          | \$m                  | \$m               | \$m                  | \$m                  |
| Sum from 2021 to 2056       | 19 687       | 12 333               | 0                 | -1773                | -15 454              |

#### 7.11 Agglomeration impacts across scenarios

Note: Using ATAP's methodology at https://www.atap.gov.au/tools-techniques/wider-economic-benefits. Source: CIE.

<sup>38</sup> ATAP Wider Economic Benefits, https://www.atap.gov.au/tools-techniques/widereconomic-benefits.

# 8 Environmental impacts

The environmental impacts measured across scenarios are land take, GHG emissions from residential buildings and EV use, transport tailpipe emissions, and noise and air pollution from transport. A summary of quantitative and monetised measures is shown in table 8.1.

- The Dispersed City scenario has the highest GHG emissions. This is driven by very high transport emissions. It also has the highest air and noise pollution costs.
- The Distributed State scenario has the lowest GHG emissions in total. It also has the least noise and air pollution from transport, reflecting a lower cost of noise and air pollution in regional areas as compared to Melbourne. However, it has the highest land take of any scenario.
- The Compact City scenario has the lowest emissions from transport and the lowest land take, but high embodied emissions push its total emissions above scenario 5.
- The difference in GHG emissions between urban built form scenarios are substantially smaller than the difference in emissions brought about by faster or slower decarbonisation pathways.

| Item                              | Sc 1         | Sc 2              | Sc 3           | Sc 4              | 4 Sc 5            |  |
|-----------------------------------|--------------|-------------------|----------------|-------------------|-------------------|--|
|                                   | Compact city | Consolidated city | Dispersed city | Network of cities | Distributed state |  |
|                                   | ha           | ha                | ha             | ha                | ha                |  |
| Land take                         |              |                   |                |                   |                   |  |
| Total difference<br>to scenario 3 | -31 260      | -18 987           | 0              | 1972              | 24 090            |  |
|                                   | Mt CO2e      | Mt CO2e           | Mt CO2e        | Mt CO2e           | Mt CO2e           |  |
| GHG emissions                     |              |                   |                |                   |                   |  |
| GHG emissions from buildings      | 15.5         | 8.3               | 0              | 1.4               | -1.8              |  |
| GHG emissions from transport      | -17.3        | -7.9              | 0              | -1.6              | -10.8             |  |
| Total                             | -1.8         | 0.4               | 0              | -0.1              | -12.6             |  |
|                                   | \$m          | \$m               | \$m            | \$m               | \$m               |  |
| Environmental costs               |              |                   |                |                   |                   |  |
| GHG emissions from buildings      | 1 898        | 1017              | 0              | 181               | -218              |  |

#### 8.1 Summary of environmental impacts

| Item                                         | Sc 1         | Sc 2                 | Sc 3           | Sc 4              | Sc 5              |
|----------------------------------------------|--------------|----------------------|----------------|-------------------|-------------------|
|                                              | Compact city | Consolidated<br>city | Dispersed city | Network of cities | Distributed state |
| GHG emissions from transport                 | -2 123       | -965                 | 0              | -190              | -1 328            |
| GHG total                                    | -225         | 52                   | 0              | -9                | -1546             |
| Noise and air<br>pollution from<br>transport | -529         | -342                 | 0              | -765              | -1 465            |
| Total GHG and<br>noise and air<br>pollution  | -754         | -290                 | 0              | -774              | -3 011            |

Source: CIE

Other potential sources of GHG emissions which we have not included are emissions from non-residential buildings and emissions from infrastructure development, including transport infrastructure. These were not measured due to data constraints and a lack of a standardised approach.

# Land take

#### Measurement approach

Additional land for urban use is based on assumptions about lot sizes and floor space ratios for dwellings and non-residential development, shares of greenfield development in each type of area and land required for local infrastructure and open space. The method is set out in detail in Appendix O.

#### **Outcomes**

Residential and local infrastructure land requirements are lowest for the Compact City scenario and increase across scenarios to be highest for Distributed State, both for 2021 to 2036 and 2036 to 2056 (table 8.2 and table 8.3). The land requirements differ by type of location:

- no additional urban land is ever required in inner and middle Melbourne as these areas are assumed to have no greenfield development
- for Dispersed City, the largest land take is in Melbourne's New Growth Areas
- for Network of Cities and Distributed State, the largest additional land take is in regional cities and regional centres/rural areas respectively.

| Region                           | 1               | 2                    | 3                 | 4                    | 5                    |
|----------------------------------|-----------------|----------------------|-------------------|----------------------|----------------------|
|                                  | Compact<br>city | Consolidated<br>city | Dispersed<br>city | Network of<br>cities | Distributed<br>state |
|                                  | ha              | ha                   | ha                | ha                   | ha                   |
| Inner Melbourne                  | 0               | 0                    | 0                 | 0                    | 0                    |
| Middle Melbourne                 | 0               | 0                    | 0                 | 0                    | 0                    |
| Outer Melbourne                  | 92              | 119                  | 144               | 109                  | 98                   |
| Melbourne new growth areas       | 6 271           | 9 005                | 11 791            | 8 298                | 7 394                |
| Regional Cities                  | 4 530           | 5 620                | 6 726             | 11 226               | 8 881                |
| Regional Centres and Rural Areas | 6 012           | 8 658                | 11 298            | 10 421               | 17 561               |
| Total                            | 16 905          | 23 403               | 29 959            | 30 054               | 33 935               |

#### 8.2 Residential and local infrastructure land requirements 2021 to 2036

Source: CIE.

#### 8.3 Residential and local infrastructure land requirements 2036 to 2056

| Region                           | 1               | 2                    | 3                 | 4                 | 5                 |
|----------------------------------|-----------------|----------------------|-------------------|-------------------|-------------------|
|                                  | Compact<br>city | Consolidated<br>city | Dispersed<br>city | Network of cities | Distributed state |
|                                  | ha              | ha                   | ha                | ha                | ha                |
| Inner Melbourne                  | 0               | 0                    | 0                 | 0                 | 0                 |
| Middle Melbourne                 | 0               | 0                    | 0                 | 0                 | 0                 |
| Outer Melbourne                  | 123             | 152                  | 201               | 146               | 110               |
| Melbourne new growth areas       | 7 509           | 9 560                | 15 557            | 9 474             | 7 539             |
| Regional Cities                  | 6 821           | 8 318                | 9 968             | 19 331            | 14 416            |
| Regional Centres and Rural Areas | 5 916           | 8 101                | 12 278            | 11 037            | 35 292            |
| Total                            | 20 369          | 26 131               | 38 005            | 39 988            | 57 357            |

Source: CIE.

We have also measured non-residential land take and open space land take.

- Non-residential land take is much smaller than for residential and local infrastructure, but has a similar pattern across scenarios
- Open space land take differs as the highest land take would be for Compact City. This
  is because there is greater capacity in existing open space in less dense areas, meaning
  that additional open space would not be required
  - Note that while additional open space in inner areas is desirable to maintain open space standards, in practice it will likely be difficult to obtain and other options such as augmenting and making open space useable for longer periods (lighting, synthetics) may be used instead.

The total land differences across scenarios are moderately significant in the context of overall urban land, but less significant in the context of Victoria as a whole. For example, Compact City scenario requires 313 square kilometres less of land than the Dispersed

City scenario. This compares to a current area of Melbourne of about 2 881 square kilometres<sup>39</sup> and an area of Victoria of 227 000 square kilometres.

| Region                               | 1               | 2                    | 3                 | 4                    | 5                 |
|--------------------------------------|-----------------|----------------------|-------------------|----------------------|-------------------|
|                                      | Compact<br>city | Consolidated<br>city | Dispersed<br>city | Network of<br>cities | Distributed state |
|                                      | ha              | ha                   | ha                | ha                   | ha                |
| Residential and local infrastructure | 37 275          | 49 534               | 67 963            | 70 041               | 91 292            |
| Non-residential                      | 735             | 939                  | 1 549             | 1 782                | 2 533             |
| Open space                           | 3 031           | 2 841                | 2 789             | 2 451                | 2 566             |
| Total                                | 41 041          | 53 314               | 72 301            | 74 274               | 96 391            |
| Difference to Dispersed City         | -31 260         | -18 987              | 0                 | 1972                 | 24 090            |

#### 8.4 Total land requirements 2021 to 2056

Source: CIE.

Whether the additional urban land is in areas with environmental implications is difficult to know. Our expectation is that it would mainly come from agricultural land, based on current use of land in areas around Melbourne and other regional cities and towns (chart 8.5).

<sup>&</sup>lt;sup>39</sup> Based on the ABS urban centre and locality of Melbourne.


#### 8.5 Catchment scale land use in Victoria

Data source: https://erin.maps.arcgis.com/apps/webappviewer/index.html?id=f401f2b81b204c82adf4d2aebe8f9a5d.

# GHG emissions from buildings

## Measurement approach

New buildings are responsible for two main types of GHG emissions:

- Operational emissions, which refers to the emissions associated with energy use of the building's occupants. This type of emission is recurring throughout the building's lifecycle
- **Embodied emissions**, the GHG emissions incurred by the physical creation process of the building. This includes creation and transport of materials, the actual construction of the building, and demolition

These two emission types are then added to give the final construction emissions for each scenario. Chart 8.6 shows the components needed to calculate each emission type. A more detailed methodology is found in Appendix N.



#### 8.6 Methodology for estimating GHG emissions from buildings

Source: CIE.

#### Outcomes

Charts 8.7, 8.8 and 8.9 show how operational and embodied emissions change over time for each scenario.

Grid decarbonisation beyond 2036 means that operational emissions are reduced to near zero, with very little difference between scenarios. This contributes towards the relatively minor overall differences between scenarios.

However, throughout the time when operational emissions are significant, the Compact City scenario has the highest operational emissions, due to a higher proportion of new dwellings being apartments, which use more emissions-intensive energy per person in a year. Note that the higher energy use for apartments reflects updated residential standards for energy efficiency, which allow a larger energy budget for apartments compared to detached houses. For example, a 100m2 apartment has a net energy allowance 47 per cent higher than a similar detached house.<sup>40</sup>



8.7 Operational emissions of new residential buildings

Note: As explained in the measurement approach, only includes operational emissions from buildings constructed in 2021 or later. Data source: CIE.



#### 8.8 Operational emissions relative to Dispersed City scenario

Note: New residential buildings only Data source: CIE.

#### <sup>40</sup> ABCB Whole of Home energy calculator,

https://www.abcb.gov.au/resources/filter/calculators for Victoria and Climate Zone 6.

Embodied emissions slightly decrease over time as the emissions intensity decreases. The increase in the year 2037 is because of the change to dwelling numbers for the period to 2036 versus from 2037 to 2056. Unlike operational emissions, embodied emissions remain relevant for the entire evaluation period, and so have a larger overall impact on environmental costs.



8.9 Embodied emissions by scenario over time

Note: 2021 was excluded, because no new buildings were constructed in 2021. Data source: CIE.

Total operational and embodied emissions from buildings across each scenario are presented in chart 8.10. The Compact City scenario has the highest combined GHG emissions from buildings, and the Distributed State scenario has the lowest.



8.10 Total emissions from residential buildings from 2021 to 2056

Data source: CIE.

This result is driven primarily by the higher relative proportion of new class 2 residential dwellings in the Compact City scenario compared to the other scenarios.<sup>41</sup>

- Because embodied emissions decrease in emissions intensity more slowly than operational emissions, the higher embodied emissions of class 2 dwellings is the main driver of the overall results for building GHG emissions.
- Class 2 dwellings (apartments) lead to higher embodied GHG emissions because the materials involved in the construction of class 2 dwellings are more emissions intensive, such as steel and concrete
- This is partly offset by the smaller floor size of apartments compared to detached dwellings and townhouses, but the increase in the occupancy rate for apartments in the Compact City scenario decrease this difference over time.

While there are some differences in GHG emissions from residential buildings across the scenarios, these are very small in the context of overall GHG emissions and the variation in possible pathways to decarbonising the electricity grid and other activities.

Using an estimate for the cost of a tonne of carbon equivalent, it is possible to find the dollar value of these differences in emissions across scenarios.

 A constant cost of \$123/tCO2-e was used. This is the initial value of carbon in the NSW treasury guide to carbon value in cost-benefit analysis<sup>42</sup>

The Compact City scenario costs \$1.9b more than the Dispersed City scenario and the Distributed State scenario costs \$0.2b less than the Dispersed City scenario (table 8.11).

| Scenario             | Total emissions | Emissions compared<br>to Dispersed City<br>scenario | Cost of emissions | Costs compared to<br>Dispersed City<br>scenario |
|----------------------|-----------------|-----------------------------------------------------|-------------------|-------------------------------------------------|
|                      | Mt CO2 e        | Mt CO2 e                                            | \$m               | \$m                                             |
| 1. Compact city      | 94              | 15.5                                                | 11 608            | 1 898                                           |
| 2. Consolidated city | 87              | 8.3                                                 | 10 727            | 1 017                                           |
| 3. Dispersed city    | 79              | 0                                                   | 9 710             | 0                                               |
| 4. Network of cities | 80              | 1.4                                                 | 9 891             | 181                                             |
| 5. Distributed state | 77              | -1.8                                                | 9 492             | -218                                            |

#### 8.11 Environmental impact from residential buildings

Note: No discount rate was applied, so all dollar values are real undiscounted. Source: CIE.

<sup>41</sup> Class 1 and class 2 dwellings are defined in the National Construction Code (NCC) as houses, both attached and detached, and apartment blocks respectively. A single apartment unit is referred to in the NCC as a single-occupancy unit (SOU) in a class 2 building. For conciseness, in this report a class 2 dwelling refers to a SOU rather than the entire building.

<sup>42</sup> NSW Treasury 2023. NSW Government Guide to Cost-Benefit Analysis, Technical note. https://www.treasury.nsw.gov.au/sites/default/files/2023-03/20230302-technical-note-totpg23-08\_carbon-value-to-use-for-cost-benefit-analysis.pdf

## Environmental impacts of transport

#### Tailpipe GHG emissions

ARUP provided strategic transport modelling for the project, including tailpipe GHG emissions. Charts 8.12 and 8.13 show their results for daily CO2 emissions in 2036 and 2056. For more detail on how these were derived, see Appendix C of the ARUP report (ARUP, 2023).<sup>43</sup>

The scenarios with the lowest tailpipe GHG emissions in 2036 are Compact City and Distributed State, while the highest tailpipe GHG emissions are in Dispersed City and Network of Cities. This is driven by greater car use in the Dispersed City and Network of Cities scenarios, leading to more vehicle kilometres travelled (VKT) and more congestion. Note that tailpipe emissions are very small by 2056 because most vehicles are assumed to be electric.



#### 8.12 Total daily CO2 emissions in 2036

Data source: ARUP.

<sup>43</sup> ARUP 2023, Urban Development Scenarios: Strategic Transport Modelling, prepared for Infrastructure Victoria



8.13 Total daily CO2 emissions in 2056

Data source: ARUP.

In 2056 the magnitude of daily CO2 emissions has fallen by over 99 per cent in every scenario. The main reason for this is that by 2056, there is an assumed 100 per cent electric vehicle (EV) uptake across the entire fleet, with no tailpipe emissions. This leaves diesel powered V/Line train services as the only GHG emitters in 2056.

The impact of this EV assumption is that by the end of the evaluation period there is very little difference between the scenarios in terms of tailpipe GHG emissions. Table 8.14 shows the difference between scenarios in tailpipe GHG emissions.

Despite this, tailpipe emissions contribute significantly to overall differences between scenarios. The Compact City scenario produces 15.4 Mt CO2-e more than the Dispersed City scenario from operational and embodied building emissions (see table 8.11) but 16.8 Mt CO2-e less than the Dispersed City scenario from tailpipe emissions, with the end result that Compact City has slightly lower overall GHG emissions. Building and tailpipe emissions pushing scenarios in opposite directions contributes to the small overall difference in GHG emissions between scenarios.

| Scenario             | Difference from Dispersed City scenario |
|----------------------|-----------------------------------------|
|                      | MT CO2-e                                |
| 1. Compact city      | -16.75                                  |
| 2. Consolidated city | -7.61                                   |
| 3. Dispersed city    | 0.00                                    |
| 4. Network of cities | -1.54                                   |
| 5. Distributed state | -10.85                                  |

#### 8.14 Difference in tailpipe GHG emissions across scenarios from 2021 to 2056

Source: CIE based on data from ARUP.

#### GHG from EV use

While EVs do not have any tailpipe emissions, they are powered by energy from the grid, and so are responsible for the GHG emissions produced in the generation of that electricity.

As a central estimate for the amount of electricity consumed by EVs we used the step change scenario from AEMOs ISP2022 forecast, adjusted for the draft 2023 IASR.<sup>44</sup>

Each scenario was given an adjustment factor based on the amount of vehicle kilometres travelled relative to the base case. The central estimates were multiplied by these adjustment factors to give electricity use from EVs in each scenario for every year between 2021 and 2056.

This was then multiplied by the electricity emissions intensity factor to get final emissions associated with EV use. Table 8.15 shows the GHG outcomes from EVs.

- The Compact City scenario has the lowest emissions and the Distributed State has the highest.
- The differences between scenarios are relatively small. This is because by the time there are large differences in the amount of electricity needed to power EVs, the grid has been decarbonised enough that a lot of electricity can be produced with very little associated GHG emissions.

| Scenario             | Total emissions | Difference from<br>Dispersed City<br>scenario | Cost of emissions | Cost difference<br>from Dispersed<br>City scenario |
|----------------------|-----------------|-----------------------------------------------|-------------------|----------------------------------------------------|
|                      | MT CO2-e        | MT CO2-e                                      | \$m               | \$m                                                |
| 1 .Compact City      | 9.68            | -0.51                                         | 1 190             | -62                                                |
| 2. Consolidated City | 9.95            | -0.23                                         | 1 224             | -29                                                |
| 3. Dispersed City    | 10.19           | 0.00                                          | 1 253             | 0                                                  |
| 4. Network of Cities | 10.17           | -0.01                                         | 1 251             | -2                                                 |
| 5. Distributed State | 10.24           | 0.05                                          | 1 259             | 6                                                  |

#### 8.15 GHG emissions from EV operation

Source: CIE.

#### Noise and air pollution

Use of transport incurs social costs other than GHG emissions. Most notably, transport leads to:

- air pollution, and
- noise pollution

<sup>44</sup> AEMO Draft IASR (2023), Detailed Electric Vehicle Workbook - Draft 2023 IASR – Orchestrated Change, https://aemo.com.au/consultations/current-and-closedconsultations/2023-inputs-assumptions-and-scenarios-consultation

To estimate each of these, total daily VKT was taken for different vehicle types from the ARUP transport modelling, and then multiplied by a conversion factor from 1000 VKT to \$AUD given in the 2021 ATAP guidelines.<sup>45</sup>

ARUP's transport modelling had kilometres travelled for the following vehicle types:

- Cars and Light Commercial Vehicles (LCVs)
- Heavy Commercial Vehicles (HCVs)
- Rail, Bus and Tram

Conversion rates used for each of these vehicle types are shown in table 8.16. For air pollution, ATAP has separate parameter values for electric vehicles compared to other vehicle types. This distinction is not made for noise pollution.

#### 8.16 Parameter values used for air and noise pollution

|                 | Cars and LCVs | HCVs        | Rail        | Bus         | Tram        |
|-----------------|---------------|-------------|-------------|-------------|-------------|
|                 | \$/1000 VKT   | \$/1000 VKT | \$/1000 PKT | \$/1000 PKT | \$/1000 PKT |
| Air pollution   |               |             |             |             |             |
| Urban           |               |             |             |             |             |
| Petrol/diesel   | 2.78          | 69.92       | 0.06        | 14.04       | 0.13        |
| EV              | 0.69          | 2.07        | 0.05        | 0.12        | 0.13        |
| Rural           |               |             |             |             |             |
| Petrol/diesel   | 1.84          | 6.99        | 0.06        | 2.80        | 0.00        |
| EV              | 0.70          | 1.500       | 0.06        | 0.09        | 0.00        |
| Noise pollution |               |             |             |             |             |
| Urban           | 7.57          | 43.72       | 10.30       | 47.11       | 10.3        |
| Rural           | 0.10          | 0.44        | 1.03        | 0.02        | 0.00        |

Source: CIE, based on ATAP.

ATAP reports separate parameters for cars and LCVs, but the ARUP transport modelling grouped these together. We used an average of the two parameter values for this category.

It was further assumed that all cars and buses are medium sized, and that there are no trams outside Greater Melbourne. Finally, we used rural parameter values for the whole state outside of Greater Melbourne. This may lead to an underestimation of the externalities, particularly for the distributed state scenario.

Charts 8.17 and 8.18 show the air pollution and noise externality respectively. The dispersed city has the highest cost in both cases, with the lowest cost in the distributed state scenario. This is likely due to the impacts of air pollution and noise pollution being larger in urban centres rather than rural communities.

<sup>45</sup> ATAP 2021, Australian Transport Assessment and Planning Guidelines: PV5 Environmental parameter values, see https://www.atap.gov.au/parameter-values/environment/index



8.17 Air pollution transport externality (2021 to 2056)

Data source: CIE, ARUP and ATAP.



#### 8.18 Noise pollution transport externality (2021 to 2056)

Data source: CIE, ARUP and ATAP.

#### 8.19 Air pollution and noise pollution by scenario

| Scenario             | Total non-GHG transport externalities | Relative to dispersed city |
|----------------------|---------------------------------------|----------------------------|
|                      | \$m                                   | \$m                        |
| 1. Compact City      | 35 940                                | -529                       |
| 2. Consolidated City | 36 127                                | -342                       |
| 3. Dispersed City    | 36 469                                | 0                          |
| 4. Network of Cities | 35 704                                | -765                       |
| 5. Distributed State | 35 004                                | -1 465                     |
| Source: CIE.         |                                       |                            |

#### Key sensitivities for GHG emissions

There are a wide variety of possible outcomes for GHG emissions estimates depending on how rapidly and how decarbonisation of energy occurs. Table 8.20 shows three alternative decarbonisation scenarios.

- A faster decarbonisation scenario in which embodied emissions intensity decreases faster. This could be achieved by, for instance, decarbonising concrete and steel production. If this occurs the overall GHG emissions (excluding tailpipe) for the scenarios falls substantially and the differences between scenarios narrow.
- A slower decarbonisation scenario, following the AEMO Slow Change scenario rather than the Step Change scenario, and with no reduction in embodied emissions intensity. This leads to much larger GHG emissions from buildings and electric vehicles, although impacts between scenarios are relatively similar
- A no decarbonisation scenario, in which neither operational or embodied emissions intensity decreases from current. This leads to very large increases in GHG emissions and makes the scenarios much more similar. This is because offsetting impacts occur. For example, the Compact City scenario has lower GHG emissions from electricity produced for powering electric vehicles. However, its building GHG emissions are higher and don't benefit from decarbonisation

Table 8.20 highlights that the GHG differences *between scenarios* (difference between rows) is much smaller than the differences *from alternative rates of decarbonisation* (differences between columns). Overall GHG emissions reduction is much more closely linked to decarbonisation pathways than it is to spatial land use scenarios and urban form.

| Scenario             | Faster decarbonisation | Current settings | Slower<br>decarbonisation | No<br>decarbonisation |
|----------------------|------------------------|------------------|---------------------------|-----------------------|
|                      | Mt CO2-e               | Mt CO2-e         | Mt CO2-e                  | Mt CO2-e              |
| 1. Compact City      | 61                     | 104              | 177                       | 578                   |
| 2. Consolidated City | 58                     | 97               | 170                       | 579                   |
| 3. Dispersed City    | 55                     | 89               | 162                       | 577                   |
| 4. Network of Cities | 56                     | 91               | 164                       | 580                   |
| 5. Distributed State | 54                     | 87               | 160                       | 579                   |

#### 8.20 GHG emissions (excluding tailpipe) under alternative rates of decarbonisation

Note: Includes building and EV operation GHG emissions but excluding tailpipe emissions. Source: CIE

## Energy use

Electricity use has been measured as part of the assessment of the overall demands placed on the grid (See Appendix E). The Compact City scenario has the highest electricity use and is 2 per cent higher than the Dispersed City scenario (table 8.21). Distributed State has the lowest operational electricity use.<sup>46</sup> Note that operational energy use excludes solar PV generated and used on site.

|                              | Sc 1         | Sc 2              | Sc 3           | Sc 4                 | Sc 5                 |
|------------------------------|--------------|-------------------|----------------|----------------------|----------------------|
|                              | Compact city | Consolidated city | Dispersed city | Network of<br>cities | Distributed<br>state |
|                              | GWh          | GWh               | GWh            | GWh                  | GWh                  |
| 2036                         |              |                   |                |                      |                      |
| Residential                  | 16 014       | 15 704            | 15 487         | 15 618               | 15 618               |
| Non-Residential              | 32 736       | 32 710            | 32 926         | 32 730               | 32 761               |
| Total                        | 48 750       | 48 414            | 48 414         | 48 348               | 48 379               |
| 2056                         |              |                   |                |                      |                      |
| Residential                  | 39 184       | 38 086            | 36 928         | 37 509               | 37 003               |
| Non-Residential              | 46 862       | 46 800            | 47 372         | 46 893               | 47 095               |
| Total                        | 86 046       | 84 886            | 84 300         | 84 402               | 84 097               |
| Difference to Sc3 (per cent) | 2.1          | 0.7               | 0.0            | 0.1                  | -0.2                 |

#### 8.21 Operational electricity use

Source: CIE.

## Other impacts not quantified

There are many other possible environmental impacts that have not been measured because they cannot be identified and linked to spatial scenarios. These include:

- waste generated and the environmental impacts from alternative ways of disposing of waste
- water use and environmental impacts from this
- air pollution outside of transport analysis of air pollution monitoring did not show consistent issues with air pollution that would suggest differences in health impacts across scenarios, and
- GHG emissions outside of residential buildings from energy and gas use and embodied energy, including from development of infrastructure.

<sup>46</sup> Note that table 8.24 shows energy use for the entire dwelling stock. GHG emissions were calculated for new dwellings only, excluding the existing stock of housing in 2021. This was because total electricity demand is needed to identify electricity infrastructure requirements, while GHG emissions from existing dwelling stock are identical across scenarios, and so were not needed.

# 9 Equity impacts of scenarios

The key metrics we think are good indicators for equity are:

- Spatial distribution of job accessibility Do areas of current disadvantage (as measured by SEIFA indices) have bigger or smaller improvements in accessibility under the scenarios?
- Spatial distribution of housing costs Is there a more or less even availability of more affordable housing products spatially as a result of the scenarios?

These indicators fit within broader frameworks for considering equity, such as the socioeconomic indices (SEIFA) developed by the Australian Bureau of Statistics. There is substantial spatial concentration of disadvantage in Melbourne (chart 9.1) and other Victorian cities (chart 9.2). Areas with the highest levels of disadvantage (i.e. the first decile) are typically in Melbourne's outer and growth areas.

The level of spatial distribution of disadvantage is primarily driven by inequalities in socio-economic outcomes. Socio-economic outcomes reflect inequality in income, education and socioeconomic outcomes of parents. For example, mothers' and fathers' education and occupation are both associated with their children's educational outcomes.<sup>47</sup> The overall spatial direction for Victoria can make some difference to spatial concentration of disadvantage.

<sup>&</sup>lt;sup>47</sup> Redmond, G., Wong, M., Bradbury, B. and Katz, I., 2014, *Intergenerational mobility: new evidence from the Longitudinal Surveys of Australian Youth*, NCVER research report.



#### 9.1 SEIFA disadvantage across Melbourne 2021

Note: Each shaded area corresponds to an SA2. *Data source:* ABS, CIE.



#### 9.2 SEIFA disadvantage across Victoria 2021

Note: Each shaded area corresponds to an SA2. *Data source:* ABS, CIE.

# Distribution of accessibility

#### Current distribution of accessibility to jobs

Accessibility to jobs by private vehicle (chart 9.3) and public transport (chart 9.4) are both much higher in Melbourne compared to regional areas. Accessibility to jobs in regional areas depends more on accessibility to Melbourne rather than to regional cities. Many of the areas with very low public transport accessibility are regional cities and rural areas, and these typically have moderate levels of disadvantage.

# Job access density (private vehicle), millions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

#### 9.3 Job access density by private vehicle, Victoria in 2018

Note: Job access density metrics do not have easily interpretable units. Each shaded area corresponds to an SA2. *Data source:* Transport model outputs provided by Arup via IV, CIE.



#### 9.4 Job access density by public transport, Victoria in 2018

Note: Job access density metrics do not have easily interpretable units. Each shaded area corresponds to an SA2. *Data source:* Transport model outputs provided by Arup via IV, CIE.

Within Melbourne, accessibility via private vehicle declines more consistently with distance from the CBD (chart 9.5). Job access density via public transport does not have as smooth of a relationship with distance to the CBD, with higher levels of accessibility visible along train lines (chart 9.6). Accessibility via both car and public transport is higher in the relatively less disadvantaged east side of Melbourne compared to the north or west.



#### 9.5 Job access density by private vehicle, Melbourne in 2018

Note: Each shaded area corresponds to an SA2. Data source: Transport model outputs provided by Arup via IV, CIE.



#### 9.6 Job access density by public transport, Melbourne in 2018

Accessibility by private vehicle (chart 9.7) and by public transport (chart 9.8) both tend to have a U-shaped relationship with disadvantage. That is, accessibility is high in both areas of low and high disadvantage, but accessibility is lower in areas with moderate levels of disadvantage. Much of this reflects that regional areas with low accessibility have moderate levels of disadvantage.



9.7 Job access density by private vehicle and disadvantage, 2018

Note: Each dot corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.

Data source: CIE.

Data source: Transport model outputs provided by Arup via IV, CIE.



#### 9.8 Job access density by public transport and disadvantage, 2018

Note: Each dot corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.

Data source: CIE.

#### Distribution of job accessibility in 2056 by scenario

Job accessibility by private vehicle differs relatively little across regional Victoria between the Compact City scenario (chart 9.9) and Distributed State scenario (chart 9.10), except that growth areas in the north of Melbourne have higher accessibility to jobs in Distributed State scenario.



9.9 Job access density by private vehicle, Victoria in 2056, Compact City scenario

Note: Each shaded area corresponds to an SA2. Data source: Transport model outputs provided by Arup via IV, CIE.



# 9.10 Job access density by private vehicle, Victoria in 2056, Distributed State scenario

Note: Each shaded area corresponds to an SA2. Data source: Transport model outputs provided by Arup via IV, CIE.

Differences in public transport accessibility between the Compact City scenario (chart 9.11) and Distributed State scenario (chart 9.12) are similarly small for regional areas. However, job access density via public transport is quite low (less than 500 000) in most regional areas, with some even having no jobs accessible based on this metric.<sup>48</sup>

<sup>&</sup>lt;sup>48</sup> The job access density metric applies a weighting of zero to jobs in destinations more than 180 minutes away.



#### 9.11 Job access density by public transport, Victoria in 2056, Compact City scenario

Note: Each shaded area corresponds to an SA2. Data source: Transport model outputs provided by Arup via IV, CIE.



9.12 Job access density by public transport, Victoria in 2056, Distributed State scenario

Note: Each shaded area corresponds to an SA2. Data source: Transport model outputs provided by Arup via IV, CIE.

Job accessibility by private car differs more significantly within Melbourne across scenarios. The Compact City scenario has higher levels of accessibility to jobs via private vehicle overall (chart 9.13) compared to the Distributed State scenario (chart 9.14). This is particularly true in the eastern side of Melbourne, which is relatively less disadvantaged. It is also true for public transport accessibility (chart 9.15 and chart 9.16).

# 9.13 Job access density by private vehicle, Melbourne in 2056, Compact City scenario



Note: Each shaded area corresponds to an SA2. Data source: Transport model outputs provided by Arup via IV, CIE.



9.14 Job access density by private vehicle, Melbourne in 2056, Distributed State scenario

Note: Each shaded area corresponds to an SA2. Data source: Transport model outputs provided by Arup via IV, CIE.



9.15 Job access density by public transport, Melbourne in 2056, Compact City scenario

Note: Each shaded area corresponds to an SA2. Data source: Transport model outputs provided by Arup via IV, CIE.



# 9.16 Job access density by public transport, Melbourne in 2056, Distributed State scenario

Note: Each shaded area corresponds to an SA2. Data source: Transport model outputs provided by Arup via IV, CIE.

## Differences in job accessibility by level of disadvantage

#### Access to jobs by private vehicle

Improvements in the job access density by private vehicle metric between 2018 and 2056 under the Dispersed City scenario are highest for areas with lower disadvantage (chart 9.17). This means that job accessibility by private vehicle would become more unequal in absolute terms over time. A similar, albeit weaker, relationship is evident when examining the distribution of percentage changes in this metric (chart 9.18)



# 9.17 Distribution of increases in job access density by car over time, Dispersed City scenario

Note: The 'Poly' series refers to a fourth order polynomial, which is used to illustrate the broad relationship between SEIFA and accessibility. Each point corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.

Data source: Transport modelling outputs provided by CIE.





Note: The 'Poly' series refers to a fourth order polynomial, which is used to illustrate the broad relationship between SEIFA and accessibility. Each point corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.

Data source: Transport modelling outputs provided by CIE.

We estimate the difference in job access density between scenarios compared to the Dispersed City scenario (charts 9.19-9.22). Each chart shows how the difference in job access density relates to the level of disadvantage in each SA2, with higher values of the index suggesting a lower level of disadvantage. If there is a positive relationship between the change in job access density in each SA2 and the level of the index, this suggests that improvements in job access for that scenario are greater for areas with lower

disadvantage. A line is fitted to the points in each chart, referred to as a 'Poly' series, so that the trend exhibited by all the dots can be visualised more clearly.<sup>49</sup>

We find that, for travel by private vehicle:

- the Compact City scenario improves accessibility across all levels of disadvantage, but most of all for areas with moderate disadvantage. That is, the value of the poly series shows that for moderate values of the index around 1000 there is a positive change in accessibility on average),
- the Consolidated City scenario has small negative impacts for areas of high and low disadvantage (i.e. values of the index around 850 and 1050 have worse accessibility in Scenario 2 compared to Scenario 3),
- the Network of Cities scenario is somewhat beneficial for accessibility of areas with moderate disadvantage, but negative for areas of low disadvantage, and
- the Distributed State scenario is similar to Network of Cities but with a more extreme fall in accessibility for areas of low disadvantage.

Impacts for each SA2 vary significantly even for a given level of disadvantage.





Note: The 'Poly' series refers to a fourth order polynomial, which is used to illustrate the broad relationship between SEIFA and accessibility. Each point corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.

<sup>&</sup>lt;sup>49</sup> 'Poly' refers to polynomial, which refers to a particular type of curve being fitted to the points on each chart. An alternative would be a straight line of best fit.



# 9.20 Distribution of difference in job access density by car, Consolidated City scenario compared to Dispersed City scenario

Note: The 'Poly' series refers to a fourth order polynomial, which is used to illustrate the broad relationship between SEIFA and accessibility. Each point corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.

Data source: Transport modelling outputs provided by CIE.





Note: The 'Poly' series refers to a fourth order polynomial, which is used to illustrate the broad relationship between SEIFA and accessibility. Each point corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.



9.22 Distribution of difference in job access density by car, Distributed State scenario compared to Dispersed City scenario

Note: The 'Poly' series refers to a fourth order polynomial, which is used to illustrate the broad relationship between SEIFA and accessibility. Each point corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.

Data source: Transport modelling outputs provided by CIE.

#### Access to jobs by public transport

Improvements in job accessibility via public transport exhibit a U-shaped relationship with levels of disadvantage (chart 9.23) as was the case for access by private vehicle. Similarly to private vehicle accessibility, inequality of access to jobs via public transport gets slightly worse in absolute terms over time.





Note: The 'Poly' series refers to a fourth order polynomial, which is used to illustrate the broad relationship between SEIFA and accessibility. Each point corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.

Charts 9.24 to 9.27 compare scenarios to the Dispersed City scenario. We find that for travel by public transport:

- The Compact City and Consolidated City scenarios improve accessibility across all levels of disadvantage,
- The Network of Cities and Distributed State scenarios worsen accessibility, although somewhat less for those experiencing greater disadvantage.
- The Distributed State scenario has the greatest decrease in accessibility.

#### 9.24 Distribution of difference in job access density by public transport, Compact City scenario relative to Dispersed City scenario



Note: The 'Poly' series refers to a fourth order polynomial, which is used to illustrate the broad relationship between SEIFA and accessibility. Each point corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.

Data source: Transport modelling outputs provided by CIE.

#### 9.25 Distribution of difference in job access density by public transport, Consolidated City scenario relative to Dispersed City scenario



Note: The 'Poly' series refers to a fourth order polynomial, which is used to illustrate the broad relationship between SEIFA and accessibility. Each point corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.



#### 9.26 Distribution of difference in job access density by public transport, Network of Cities scenario relative to Dispersed City scenario

Note: The 'Poly' series refers to a fourth order polynomial, which is used to illustrate the broad relationship between SEIFA and accessibility. Each point corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.

Data source: Transport modelling outputs provided by CIE.





Note: The 'Poly' series refers to a fourth order polynomial, which is used to illustrate the broad relationship between SEIFA and accessibility. Each point corresponds to an SA2. A higher value on the index of relative socio-economic disadvantage denotes being less disadvantaged.

# Distribution of housing by affordability

For each scenario we estimate the distribution of housing prices, including the share of dwellings available for sale below \$750 000 and dwellings available for rent below \$500 per week, assuming no overall growth in prices (in today's dollars).<sup>50</sup>

The approach for this analysis is shown in box 6.6. In summary, we first estimate the distribution of sale prices and rents using the most recent 2 years of PropTrack data for each SA2 and dwelling type. Then we shift this distribution up or down for each scenario based on the difference in value per dwelling estimated for that scenario using the housing model.

We measure the share of dwellings within price bands. We've chosen to use arbitrary round price bands rather than estimate affordability thresholds, since it avoids needing to predict the overall trajectory for sale prices and rents, which will depend on interest rates and other external factors.

<sup>50</sup> These values have been chosen because they are round numbers that are close to median sale prices and rents. We also present estimates of the full distribution of sale prices and rents (see charts 9.29 and 9.30).

#### 9.28 Approach to estimating the distribution of dwelling sale prices and rents

- 1 **Specify the distribution of sale prices and rents in 2021:** Using PropTrack data, estimate the 5<sup>th</sup>, 10<sup>th</sup>, 20<sup>th</sup>, 30<sup>th</sup>, 40<sup>th</sup>, 50<sup>th</sup>, 60<sup>th</sup>, 70<sup>th</sup>, 80<sup>th</sup>, 90<sup>th</sup> and 95<sup>th</sup> percentiles of sale prices and of rentals for each combination of SA3 and three dwelling types in the PropTrack dataset (houses, townhouses, and apartments).
- 2 Estimate the change in average prices relative to 2021: Using the outputs of the housing model, estimate the change in average prices from 2021 to 2036 and 2056 for each combination of SA3 and the three dwelling types.
  - a) This incorporates the effect of increases in accessibility, changes in the height of apartments (e.g. a higher share of high-rise apartments rather than low-rise), the effect of demand saturation, and changes in the share of dwellings within each SA2 comprising an SA3<sup>51</sup> under each scenario.
- 3 Estimate the change in average values relative to the Victoria in Future forecasts (VIF): Divide the increases in sales prices by the increase in sale prices of each property type across all SA3s under the Victoria in Future population projections to estimate the change in sale prices assuming 'no price growth'.
  - a) For example, if prices have increased 150 per cent for houses in Ballarat by 2056 in the Distributed State scenario, but houses in Victoria increase by 125 per cent under the Victoria in Future population projections by 2056, this implies that the difference in prices in Ballarat by 2056 assuming no overall price growth is 120 per cent.
  - b) The reason for this step is that it facilitates representing affordability in an approximation of current prices.
- 4 Apply the change in average values relative to the VIF to shift the distribution of sale prices and rents.
- 5 Linearly interpolate the sale price and rent for each percentile from 5-95 (i.e. 5, 6, 7 ... 94 and 95).
- 6 Estimate the number of dwellings that are under various sale price and rent thresholds: Based on the interpolated distributions, we estimate the share of dwellings in each SA2 with a sale price below \$250 000, \$500 000, ..., \$1.75 million and \$2 million and over.
- 7 Sum up across dwelling types and SA3s to aggregate to regions or all of Victoria.

#### Share of housing that is affordable in 2036

The scenarios differ relatively little by 2036 in terms of the distribution of sale prices (chart 9.29) and rents (chart 9.30). The Compact City scenario has relatively more expensive dwellings, while the Distributed State scenario has relatively cheaper

<sup>&</sup>lt;sup>51</sup> That is, while the housing affordability modelling is conducted at the SA3 level, the housing model (which estimates the total value from housing) is built at the SA2 level.



dwellings. This reflects the value of housing being higher overall under the Compact City scenario.



Note: Prices are current as at the September quarter of 2022. Data source: PropTrack data, CIE housing model.



#### 9.30 Distribution of rents in 2036 by scenario

Note: Prices are current as at the September quarter of 2022. Data source: PropTrack data, CIE housing model.

By comparing the share of dwellings for sale below \$750 000 (assuming no overall price growth) by region (chart 9.31), it shows affordability is highest in each region for the scenario that delivers the greatest dwelling growth. For example, while the Compact City scenario has worse affordability overall, it has a large positive impact on affordability in Inner Melbourne. Inner Melbourne has relatively worse affordability than other regions except for Middle Melbourne. This reflects a greater share of dwellings in Inner Melbourne being apartments, and, therefore, falling under these affordability thresholds.

Similarly, Sthe Dispersed City scenario has the highest share of properties under \$750 000 in Outer Melbourne and Melbourne new growth areas, and the Network of Cities scenario has the best affordability outcome in Regional Cities.

Similar patterns of results are evident for rentals (chart 9.32), although, rental affordability is less variable between regions of Victoria than affordability of ownership.



#### 9.31 Share of properties for sale below \$750 000 in 2036, assuming no price growth

Note: Prices are current as at the September quarter of 2022. Data source: PropTrack data, CIE housing model.

#### 9.32 Share of rental below \$500/week in 2036, assuming no price growth



Note: Prices are current as at the September quarter of 2022. *Data source:* PropTrack data, CIE housing model.

#### Share of housing that is affordable in 2056

The differences in housing affordability between scenarios are larger in 2056, particularly for the Distributed State scenario. Almost twice as many dwellings would be available for sale under \$500 000 in the Distributed State scenario 5 compared to the Compact City and Consolidated City scenarios (chart 9.33).

Rental affordability also improves most in the Distributed State scenario (chart 9.34), although much of this is an increase in the share of rentals available for less than \$200/week (assuming no price growth). The improvement in affordability under the Distributed State scenario is as a result of a fall in values for regional areas due to an oversupply of dwellings in these areas.



#### 9.33 Distribution of sale prices in 2056 by scenario

Note: Prices are current as at the September quarter of 2022. Data source: PropTrack data, CIE housing model.



#### 9.34 Distribution of rents in 2056 by scenario

Note: Prices are current as at the September quarter of 2022.

Data source: PropTrack data, CIE housing model.

The share of properties for sale under \$750 000 in 2056 (chart 9.35) and for rent under \$500 per week (chart 9.36) differs significantly across scenarios:

- Inner Melbourne experiences slight improvements in affordability relative to 2036 under Scenarios 2-4. The Distributed State scenario has a significant deterioration in affordability, since far less apartments are provided in Inner Melbourne, while the Compact City scenario has a significant improvement.
- Middle Melbourne experiences relatively little change in affordability, despite it having the lowest levels of affordability out of any region.
- Outer Melbourne and Melbourne new growth areas have better affordability under Scenarios 3-5.
- Changes in affordability for regional areas are relatively smaller, except for a large improvement in ownership affordability under the Distributed State scenario for Regional Centres and Rural Areas.



#### 9.35 Share of properties for sale below \$750 000 in 2056, assuming no price growth

Note: Prices are current as at the September quarter of 2022. Data source: PropTrack data, CIE housing model.



#### 9.36 Share of rental below \$500/week in 2056, assuming no price growth

Note: Prices are current as at the September quarter of 2022.

Data source: PropTrack data, CIE housing model.
# 10 Risks and robustness of spatial scenarios

Measuring impacts for population and job scenarios for a long horizon is clearly subject to major uncertainties. Scenarios may have different impacts if changes occur that drive people and business preferences in different ways. Examples might include:

- technology changes that allow people to choose where they live with less concern to where they work, such as driverless cars or further increases in remote working and business models that suit this
- disasters such as war, natural disasters and pandemics, which alter how people want to live and work
- radical changes in industry structures that favour centralisation or decentralisation.

In this chapter we test how **robust** the estimated impacts of scenarios are to changes to people and business preferences that could arise from these types of factors.

As important, if not more, there are **risks** associated with actually delivering housing, commercial and industrial space and services in the way required for each of the scenarios. This chapter also discusses key risks and what their implications are from a policy perspective.

## **Robustness of scenarios**

#### Housing preferences

The magnitude of housing preference impacts is affected significantly by alternative assumptions about the value of different dwelling types and regions (table 10.1), but the ranking of scenarios remains unchanged:

- Increases in the value for regional areas or decreases in value for apartments both worsen the impact of the Compact City and Consolidated City scenarios on housing values, but improve the Network of Cities and Distributed State scenarios. That is, if values in regional areas were higher, the Network of Cities and Distributed State scenarios would align more closely to housing preferences than if values in regional areas were lower. However, such a shift in preferences wouldn't be sufficient to change the ranking of scenarios in terms of how closely they align to housing preferences (i.e. how high the total value of housing is). Conversely, a lower value for detached dwellings decreases total housing value more for the Network of Cities and Distributed State scenarios.
- Assuming that there is no real price growth for dwellings decreases the magnitude of housing impacts significantly, but doesn't affect the comparison between scenarios as much.

Assuming that price growth is higher in regional areas compared to Melbourne by 0.7 percentage points per annum, has relatively little impact on the overall magnitude of housing values (i.e. still between \$2.0-2.3 trillion in present value terms) or the ranking of scenarios.

| Alternative                                       | Sc1          | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|---------------------------------------------------|--------------|----------------------|-------------------|----------------------|----------------------|
|                                                   | Compact City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                   | \$b, PV      | \$b, PV              | \$b, PV           | \$b, PV              | \$b, PV              |
| Total net value                                   |              |                      |                   |                      |                      |
| Main assumptions                                  | 2 257        | 2 204                | 2 154             | 2 100                | 2 057                |
| 20% increase in value for regional areas          | 2 373        | 2 324                | 2 280             | 2 231                | 2 191                |
| 20% reduction in value for apartments             | 2 198        | 2 163                | 2 128             | 2 067                | 2 022                |
| 20% reduction in the value for detached dwellings | 2 044        | 1 976                | 1 905             | 1 859                | 1 797                |
| No real price growth                              | 1841         | 1773                 | 1706              | 1 668                | 1 616                |
| Higher price growth for regional areas            | 2 257        | 2 204                | 2 154             | 2 100                | 2 057                |
| Net value relative to Dispersed City              | scenario     |                      |                   |                      |                      |
| Main assumptions                                  | 103          | 50                   | 0                 | - 55                 | - 97                 |
| 20% increase in value for regional areas          | 93           | 45                   | 0                 | - 48                 | - 88                 |
| 20% reduction in value for apartments             | 70           | 34                   | 0                 | - 62                 | - 106                |
| 20% reduction in the value for detached dwellings | 139          | 71                   | 0                 | - 46                 | - 108                |
| No real price growth                              | 135          | 67                   | 0                 | - 38                 | - 90                 |
| Higher price growth for regional areas            | 103          | 50                   | 0                 | - 55                 | - 97                 |

| 10.1 | Housing preference | impacts | estimated under | alternative assumptions |
|------|--------------------|---------|-----------------|-------------------------|
|      |                    |         |                 |                         |

Note: PV refers to present value.

Source: CIE.

#### **Business preferences**

How preferences for where businesses prefer to locate may change is uncertain. It could depend on factors such as the structure of the Victorian economy, ability to work in different locations remotely and changes to how businesses access their consumers. Moderate changes in preferences generally do not shift the ranking of alternative scenarios in terms of business location impacts (table 10.2). The exception is that a 20 per cent increase in the value of all regional space would lead to Network of Cities and Distributed State having higher business location productivity to the Dispersed City scenario. It would take quite substantial preference shifts for the estimated business location productivity of the Compact City scenario to be lower than any other scenario,

given the large difference in values for space in Inner Melbourne, of which this scenario provides more.

|                                                                         | 1            | 2                 | 3              | 4                    | 5                    |
|-------------------------------------------------------------------------|--------------|-------------------|----------------|----------------------|----------------------|
|                                                                         | Compact city | Consolidated city | Dispersed city | Network of<br>cities | Distributed<br>state |
|                                                                         | \$b          | \$b               | \$b            | \$b                  | \$b                  |
| Main assumptions                                                        | 30.8         | 9.0               | 0.0            | -0.6                 | -8.2                 |
| 20% increase in value of space for regional areas                       | 28.7         | 7.5               | 0.0            | 5.4                  | 1.5                  |
| 20% reduction in value of<br>space in inner city<br>Melbourne           | 17.2         | 6.8               | 0.0            | -0.1                 | -4.4                 |
| 20% increase in value for<br>space in Melbourne<br>excluding inner city | 27.8         | 10.6              | 0.0            | -7.1                 | -17.4                |
| 20% increase in value for space for knowledge jobs                      | 35.6         | 10.6              | 0.0            | -0.4                 | -9.7                 |
| 20% increase in value for space for industrial jobs                     | 30.6         | 8.0               | 0.0            | -1.9                 | -9.0                 |

**10.2** Business preference impacts estimated under alternative assumptions

Source: CIE.

#### Decarbonisation pathways

The central analysis assumes decarbonisation of the electricity grid over time. This could happen more or less rapidly. A more rapid decarbonisation of both the grid and embodied emissions in buildings would bring scenarios closer together in terms of their overall GHG impacts. Conversely, a slower transition would make them more different (table 10.3). More importantly, **the decarbonisation pathway is much more impactful** than the land use scenario in determining overall GHG emissions from buildings.

#### 10.3 GHG emission impacts estimated under alternative assumptions

|                                                                       | 1            | 2                 | 3              | 4                    | 5                    |
|-----------------------------------------------------------------------|--------------|-------------------|----------------|----------------------|----------------------|
|                                                                       | Compact city | Consolidated city | Dispersed city | Network of<br>cities | Distributed<br>state |
|                                                                       | MT           | MT                | MT             | MT                   | MT                   |
| Main assumptions                                                      | 104          | 97                | 89             | 91                   | 87                   |
| Rapid reduction in embodied emissions                                 | 61           | 58                | 55             | 56                   | 54                   |
| Slower decarbonisation of grid and no reduction in embodied emissions | 177          | 170               | 162            | 164                  | 160                  |
| No decarbonisation of grid<br>or reduction in embodied<br>emissions   | 578          | 579               | 577            | 580                  | 579                  |

Note: Excludes tailpipe emissions, which do not vary as the grid decarbonises

## Types of risks and their materiality

The discussion above is focused on changes that are outside of the scenarios, but can change the impacts that arise from scenarios. There are also **risks**, which are about the likelihood that a scenario can be delivered in the way expected. Based on the pattern of impacts the most significant risks are:

- whether some scenarios are more likely to be able to deliver the required amount of housing than others
- whether some scenarios are more likely to be able to deliver the required amount of business space than others, and
- whether it will be easier to provide increased services in some scenarios versus others.

#### Getting enough housing

There are constraints on achieving increases in housing supply in Melbourne, particularly in inner areas where there can be community opposition to higher densities. If these constraints act to reduce the increase in housing supply for Inner Melbourne, this would reduce the housing impacts by around \$8 billion for the Compact City and Consolidated City scenarios. Impacts are larger (\$10-12 billion) if middle Melbourne also had 30 per cent less housing supply increase than specified by the scenarios (table 10.4).

These estimates are likely to understate the impact of reducing housing supply since delivering less housing in inner areas of Melbourne may also affect the amount of jobs in Melbourne. To the extent it also reduces the amount of jobs in Melbourne, this would reduce accessibility to jobs throughout all of Melbourne, and thus decrease housing impacts further.

| Alternative                                                    | 1               | 2                     | 3                 | 4                    | 5                    |
|----------------------------------------------------------------|-----------------|-----------------------|-------------------|----------------------|----------------------|
|                                                                | Compact<br>city | Consolidate<br>d city | Dispersed<br>city | Network of<br>cities | Distributed<br>state |
|                                                                | \$b, PV         | \$b, PV               | \$b, PV           | \$b, PV              | \$b, PV              |
| Total net value                                                |                 |                       |                   |                      |                      |
| Main assumptions                                               | 2 257           | 2 204                 | 2 154             | 2 100                | 2 057                |
| Only achieve 70 per cent of inner<br>Melbourne supply increase | 2 291           | 2 237                 | 2 191             | 2 133                | 2 082                |
| Only achieve 70 per cent of inner and middle Melbourne supply  | 2 287           | 2 235                 | 2 190             | 2 132                | 2 080                |
| Net value relative to main assumptions                         |                 |                       |                   |                      |                      |
| Only achieve 70 per cent of inner<br>Melbourne supply increase | 34              | 33                    | 36                | 33                   | 25                   |
| Only achieve 70 per cent of inner and middle Melbourne supply  | 30              | 31                    | 35                | 32                   | 23                   |
| Source: CIE.                                                   |                 |                       |                   |                      |                      |

#### 10.4 Difference in housing impacts depending on how much is delivered

#### Getting enough business space

If there are constraints on business space, these are likely to be most likely and consequential in inner areas of Melbourne. The impact of constraints on space can outweigh the differences between some of the spatial scenarios, for business location impacts (table 10.5).<sup>52</sup> This suggests that both ensuring that there is enough business space developed and which locations are developed are both important. It is more valuable to have space developed in a less preferred location than not at all, so long as that space can meet commercial viability requirements.

#### 10.5 Estimated business location productivity impacts

|                                                          | 1               | 2                    | 3                 | 4                    | 5                    |
|----------------------------------------------------------|-----------------|----------------------|-------------------|----------------------|----------------------|
|                                                          | Compact<br>city | Consolidated<br>city | Dispersed<br>city | Network of<br>cities | Distributed<br>state |
|                                                          | \$b             | \$b                  | \$b               | \$b                  | \$b                  |
| Main assumptions                                         | 193             | 172                  | 163               | 162                  | 154                  |
| Only achieve 70% of inner Melbourne supply               | 181             | 165                  | 157               | 157                  | 151                  |
| Difference to main assumptions                           | -12             | -6                   | -5                | -5                   | -4                   |
| Only achieve 70% of inner and middle<br>Melbourne supply | 175             | 158                  | 153               | 153                  | 147                  |
| Difference to main assumptions                           | -18             | -13                  | -10               | -9                   | -7                   |

Note: These are undiscounted values.

Source: CIE.

#### Providing infrastructure and services

Providing infrastructure and services such as community facilities, schools and open space is likely to be most challenging in existing urban areas where there is not sufficient capacity in existing sites. This is currently reflected in the high cost allocated to these government services in the cost assessment. It is possible that rather than resulting in higher costs for providing services, the quality of services declines, such as through more crowded spaces and more crowded schools. This risk is highest in compact city scenarios. However, Melbourne is not a dense city by international standards and other cities have found mechanisms to provide government services in higher density environments and so the risk is not considered high. Different approaches also offer the opportunity to reduce these costs in the future, such as shared use facilities.<sup>53</sup>

<sup>&</sup>lt;sup>52</sup> Note that these calculations reduce the amount of space available but do not change the accessibility metrics for scenarios.

<sup>&</sup>lt;sup>53</sup> For example, see Richmond High School (https://www.schoolbuildings.vic.gov.au/richmondhigh-school) and Arden Community Infrastructure (https://vpa-web.s3.amazonaws.com/wpcontent/uploads/2021/09/Arden-Precinct-Indicative-Cost-Plan-Report-Turner-Townsend-April-2021.pdf).

PART IV

Technical appendices



# A Local infrastructure cost

- Urban development requires substantial additional local infrastructure until 2056.
  - This includes the streetscape and reticulation of services <u>within</u> a development area to each property and includes local roads, civil works including drainage, sewerage, water supply, electricity, gas, telecommunications, and conversion of infill street scapes.
  - Infrastructure requirements <u>outside</u> of the development area are costed separately.
- **Total expected cost of local infrastructure is likely to be large (over \$135 billion).** 
  - Costs are highest for scenarios with high shares of Greenfield development, such as the Distributed State (\$163 billion) and Dispersed City (\$160 billion) scenarios, due to the higher local infrastructure development cost per dwelling for greenfield development (including regional greenfield)
  - The Compact City scenario has the least cost across scenarios due to relatively high share of Infill development in established areas. This is despite the additional local infrastructure costs when converting industrial land to residential use in inner Melbourne.

## Local infrastructure costs of residential development

#### Cost by development setting from Infrastructure Victoria (2019)

The primary source we rely on for local infrastructure costs of development is the *Infrastructure Provision in Different Development Settings Metropolitan Melbourne Costing and Analysis* report (SMEC, 2019).<sup>54</sup> Costs per dwelling have been escalated to Dec-2022 dollars and are collated in table A.1. Note that these costs assume that there is an existing residential streetscape in the development area.

<sup>54</sup> SMEC, 2019, Infrastructure Provision in Different Development Settings Metropolitan Melbourne Costing and Analysis Report.

|                                                       |             | Greenfield        | Established                                                                                                                   |                                                                                                              |                                                                                  |
|-------------------------------------------------------|-------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Infrastructure element within<br>the development site | Source      | Separate<br>house | Small Scale<br>Dispersed Infill<br>Development<br>in Middle<br>Established<br>Greyfield Area<br>(2-4 dwelling<br>development) | Precinct Scale<br>Brownfield<br>Development<br>in<br>middle/outer<br>established<br>Area (medium<br>density) | High Density<br>Development<br>in Inner<br>Established<br>Area (high<br>density) |
|                                                       |             | \$/dwelling       | \$/dwelling                                                                                                                   | \$/dwelling                                                                                                  | \$/dwelling                                                                      |
| Earthworks & Roads                                    | SMEC (2019) | 38 946            | 13 104                                                                                                                        | 25 767                                                                                                       | 3 786                                                                            |
| Drainage reticulation and connection                  | SMEC (2019) | 11 787            | 11 264                                                                                                                        | 7 641                                                                                                        | 2 589                                                                            |
| Sewerage reticulation and connection                  | SMEC (2019) | 6 375             | 4 390                                                                                                                         | 4 445                                                                                                        | 1 410                                                                            |
| Water and Gas Reticulation                            | SMEC (2019) | 4 907             | 4 967                                                                                                                         | 3 157                                                                                                        | 1 350                                                                            |
| Electrical reticulation and connection                | SMEC (2019) | 4 909             | 3 048                                                                                                                         | 5 861                                                                                                        | 2 501                                                                            |
| Telecommunications reticulation and connection        | SMEC (2019) | 1 609             | 548                                                                                                                           | 1 036                                                                                                        | 690                                                                              |
| Landscape                                             | SMEC (2019) | 2 646             | 1 203                                                                                                                         | 2 208                                                                                                        | 924                                                                              |
| Residential Street Scape (only<br>Inner Melbourne)    | Arden DCP   | 0                 | 20 985                                                                                                                        | 20 985                                                                                                       | 20 985                                                                           |
| Community Infrastructure                              | CIE         |                   |                                                                                                                               | Sepa                                                                                                         | arately estimated                                                                |
| Emergency services<br>infrastructure                  | CIE         |                   |                                                                                                                               |                                                                                                              | Not estimated                                                                    |
| Health Infrastructure                                 | CIE         | Not estima        | ated except for loc                                                                                                           | al community hea                                                                                             | Ith Infrastructure                                                               |
| Education Infrastructure                              | CIE         |                   |                                                                                                                               | Sepa                                                                                                         | arately estimated                                                                |
| Total local infrastructure costs<br>(Inner Melbourne) |             | 71 179            | 59 508                                                                                                                        | 71 099                                                                                                       | 34 235                                                                           |
| Total local infrastructure costs (all other areas)    |             | 71 179            | 38 523                                                                                                                        | 50 114                                                                                                       | 13 250                                                                           |

#### A.1 Local infrastructure rates (capital cost), by type of development

Note: Figures are denoted in real 2022/23 dollars.

Source: CIE, SMEC, 2019, Infrastructure Provision in Different Development Settings Metropolitan Melbourne Costing and Analysis Report, Table 2, 4, 7 and 8, VPA (2022) Arden Precinct WURUNDJERI WOI WURRUNG COUNTRY Development Contributions Plan, Table 15.

#### Premium for conversion of industrial lands in established areas

For development in formerly industrial areas, there will be additional local infrastructure costs associated with progressively converting industrial streetscapes into residential streetscapes, whilst they remain in use. Two such areas are:

- Arden, a development area in the north-west of inner Melbourne providing for around 34 000 jobs and 15 000 residents. The project involves urban renewal of around 50 hectares of largely industrial land.
- **Fishermans Bend**, is an in-progress development of 480 hectares south of the Yarra River near Melbourne CBD.

For such areas, we assume that there is a higher rate of local infrastructure costs based on the costs in the Arden precinct.<sup>55</sup> The Development Contributions Plan (DCP)<sup>56</sup> for Arden reports a range of costs that are not included in SMEC (2019), such as street projects. Some of these (such as community centres) are estimated elsewhere in our analysis, and marked 'separately estimated' in table A.1. The cost for civil works including drainage in the SMEC (2019) report all relate to works within the development site. Therefore, the costs from the Arden DCP, which relate to outside the development site, are additional to the costs from SMEC (2019).

Overall, there is a cost premium of \$20 985 per dwelling associated with these local infrastructure costs relative to the cost for high-density development from SMEC (2019). This premium is applied to development in the Arden and Fishermans Bend precincts, which correspond to the North Melbourne and Port Melbourne Industrial SA2, respectively.

#### A.2 Additional local infrastructure capital costs for urban renewal of industrial areas

| Infrastructure element          | Cost per residential dwelling from Arden DCP |
|---------------------------------|----------------------------------------------|
|                                 | \$/dwelling                                  |
| Community Centre projects       | Separately estimated                         |
| Local Park projects             | Separately estimated                         |
| Sporting reserve                | Separately estimated                         |
| Street projects                 | 3 086                                        |
| Pedestrian and cycling projects | 239                                          |
| Intersection projects           | 1 501                                        |
| Drainage projects               | 16 159                                       |
| Total cost                      | 20 985                                       |

Note: Figures are denoted in real 2022/23 dollars. No escalation is applied to the Arden DCP figures (which are already from 2022). Source: VPA (2022) Arden Precinct WURUNDJERI WOI WURRUNG COUNTRY Development Contributions Plan, Table 15, CIE.

#### Assumed local development cost per dwelling

We align the estimated costs from the SMEC (2019) analysis to the dwelling typology used in our housing model (table A.3), which is then used to calculate total local infrastructure costs due to residential development.

For brownfield and infill areas, the correspondence between SMEC (2019) estimates and housing model typologies we use is as follows:

<sup>&</sup>lt;sup>55</sup> We have not used estimates of cost per dwelling for local infrastructure in Fishermans Bend since it is less recent and we expect there has been significant cost escalation since infrastructure cost estimates were published for Fisherman's Bend.

<sup>&</sup>lt;sup>56</sup> Note that we use the DCP as a source for estimated local infrastructure costs, without relying on the amount of development contributions as an indicator of costs. Development contributions are not necessarily fully recovering costs, and therefore, contribution per dwelling is typically lower than infrastructure costs per dwelling.

- Separate house, attached, and Other: Small Scale Dispersed Infill Development in Middle Established Area (2-4 dwelling development)<sup>57</sup>
- Low-rise apartments: Precinct Scale Brownfield Development in middle/outer established Area (medium density)
- High-rise apartments: High Density Development in Inner Established Area (high density)

For medium-rise apartments, we take the average of the local infrastructure cost for low-rise and for high-rise apartments.

For greenfield areas, we have assumed estimates of greenfield local infrastructure costs from SMEC (2019) apply to separate houses. SMEC (2019) does not separately report cost estimates for medium and high-density greenfield development.

In order to estimate the costs for medium density and high-density development we assume that the relativities between housing types are the same in brownfield and greenfield areas. For example, the ratio of local infrastructure costs for medium-density development compared to small scale dispersed development in brownfield areas is 130 per cent (the ratio of \$50 114 to \$38 523), and we assume this relativity is the same in greenfield areas. This implies that since cost per greenfield house is \$71 179, cost per medium density dwelling (e.g. low rise apartments) in greenfield areas is \$92 597. The local development cost of high-density development is expected to be 34 per cent as high as for small scale dispersed development, since, for example, apartments have less street frontage per dwelling, and so lower streetscape needs.

Further, estimates from SMEC (2019) apply to metropolitan Melbourne, and we have not identified an alternative source for regional areas. Hence, we assume that local infrastructure costs per dwelling are the same in regional areas as in greenfield areas of Melbourne.

Note, that for brownfield development in Arden and Fishermans Bend we apply a premium of \$20 985 per dwelling in addition to the values in table A.3.

| Dwelling type          | Infill/Brownfield | Greenfield (including regional) |
|------------------------|-------------------|---------------------------------|
|                        | \$/dwelling       | \$/dwelling                     |
| Separate house         | 38 523            | 71 179                          |
| Attached               | 38 523            | 71 179                          |
| Low rise apartments    | 50 114            | 92 597                          |
| Medium rise apartments | 31 682            | 58 539                          |
| High rise apartments   | 13 250            | 24 482                          |
| Other                  | 38 523            | 71 179                          |

#### A.3 Local infrastructure capital cost per dwelling assumed in the model

Note: Figures are denoted in real 2022/23 dollars.

<sup>&</sup>lt;sup>57</sup> While SMEC (2019) only costed local infrastructure for houses in greenfield settings, we've taken the cost of small scale infill development as the cost of a separate house (plus attached and other dwellings). This is justified as the major costs involved are civil works.

Source: CIE based on SMEC (2019).

#### Cost summary

The total costs of local infrastructure including operating cost<sup>58</sup> of 2 per cent per annum associated with residential development are summarised in table A.4. Costs are higher for scenarios with more greenfield development, including regional greenfield development.

|                                 | Sc1          | Sc2                  | Sc3            | Sc4               | Sc5               |
|---------------------------------|--------------|----------------------|----------------|-------------------|-------------------|
| Additional from<br>2021 to 2056 | Compact City | Consolidated<br>City | Dispersed City | Network of Cities | Distributed State |
|                                 | \$b          | \$b                  | \$b            | \$b               | \$b               |
| Capital Cost                    | 99.1         | 108.9                | 118.4          | 116.4             | 120.4             |
| Operating Cost                  | 35.5         | 39.0                 | 41.9           | 41.2              | 42.2              |
| Total                           | 134.6        | 147.9                | 160.3          | 157.5             | 162.5             |

#### A.4 Local infrastructure impacts across scenarios – total cost (\$ billions)

Note: Figures are denoted in real 2022/23 dollars. Source: CIE.

## Distributional impact

For the purpose of this analysis, we have assumed that the capital cost of local infrastructure is funded by developers, while the operating cost is predominantly recovered through user charges. This is a simplifying assumption given that maintenance of local roads, landscape, and residential street scape falls usually within the responsibility of the local governments. However, operating cost for those are usually quite low compared to the other infrastructure elements within the development site.

<sup>&</sup>lt;sup>58</sup> SMEC, 2019, Infrastructure Provision in Different Development Settings Metropolitan Melbourne Costing and Analysis Report, p.79

# B Open space

- Additional open space provision until 2056 ranges between 2 566 hectares and 3 031 hectares across the different scenarios, while the Compact City scenario requires the most and the Distributed State scenario the least additional open space.
  - The main driver of additional open space provision is change in population density as well as the type of development area (greenfield versus infill).
- Total expected cost for additional open space infrastructure until 2056 are highest for the Compact City scenario (\$26.1 billion), followed by the Consolidated City scenario with \$17.1 billion. The Dispersed City and Network of Cities scenarios have similar costs with \$14.0 and \$12.5 billion. The least cost is estimated for the Distributed State scenario with \$10.8 billion.
  - Main driver of costs is the actual additional provision of open space, the land cost in scenarios with high infill development and the capital and operating cost for open space in inner, middle and outer Melbourne.

|                                 | Sc1          | Sc2                  | Sc3            | Sc4               | Sc5               |
|---------------------------------|--------------|----------------------|----------------|-------------------|-------------------|
| Additional from<br>2021 to 2056 | Compact City | Consolidated<br>City | Dispersed City | Network of Cities | Distributed State |
|                                 | ha           | ha                   | ha             | ha                | ha                |
| Requirement                     | 3 031        | 2 841                | 2 789          | 2 451             | 2 566             |
|                                 | \$b          | \$b                  | \$b            | \$b               | \$b               |
| Capital Cost                    | 7.4          | 6.3                  | 5.7            | 5.2               | 5.2               |
| Operating Cost                  | 1.7          | 1.4                  | 1.3            | 1.2               | 1.2               |
| Land cost                       | 17.1         | 9.4                  | 7.0            | 6.2               | 4.4               |
| Total                           | 26.1         | 17.1                 | 14.0           | 12.5              | 10.8              |

#### B.1 Open space infrastructure impacts across scenarios

Note: Total may not sum up due to rounding.

Source: CIE.

## **Open Space Provision in Victoria**

Public open space (including parks, gardens, playgrounds, public beaches, riverbanks and waterfronts, outdoor playing fields and courts and publicly accessible bushland) are a major contributory element to liveability, connectivity and mitigation of urban heat impacts.

The Victorian Planning Authority (VPA) Open Space network planning principles aims to provide accessible, high-quality open spaces for residents in Victoria.<sup>59</sup> Priorities of open space provision can be summarised as follows:

- Accessibility: open spaces are easily accessible to all residents, regardless of their location or socio-economic status.
- Quantity: Provide an appropriate amount of open space to cater for a range of community uses.
- Quality: provision of high-quality open spaces, including parks, playgrounds, and sporting facilities, that meet the diverse needs of the community.
- Diversity: importance of diverse open spaces, including natural areas, cultural and heritage sites, and community gardens.
- Connectivity: connectivity of open spaces, including the creation of networks and links between open spaces to provide a seamless recreational experience for residents.
- Sustainability: sustainable open spaces, including the use of environmentally friendly design principles and the preservation of natural habitats.
- Collaboration: collaboration between different stakeholders, including local councils, community groups, and developers, in the planning and delivery of open spaces.

Depending on the public open space definition, provision rates can vary largely. Conservation reserves and natural open space (such as 'Bushland') account for over 78 per cent of open space in the municipalities of the Melbourne metropolitan area, while most of that is on the fringe (table B.2). Similar, in regional Victoria conservation parks account for the majority of open space.

| Type of open space                     |          | Area     |
|----------------------------------------|----------|----------|
|                                        | Hectares | Per cent |
| Melbourne Metropolitan Area            |          |          |
| Parks and gardens                      | 6 730    | 10.7     |
| Transport reservations                 | 71       | 0.1      |
| Sports fields and organised recreation | 6 135    | 9.7      |
| Recreation corridor                    | 934      | 1.5      |
| Natural and semi-natural open space    | 26 383   | 41.8     |
| Conservation reserves                  | 22 772   | 36.1     |
| Civic squares and promenades           | 28       | 0.0      |
| Total                                  | 63 051   | 100.0    |
| Regional Victoria                      |          |          |
| Conservation Park                      | 253 564  | 88.0     |
| Parks                                  | 28 398   | 9.9      |

#### B.2 Distribution of existing public open space types

<sup>59</sup> VPA Metropolitan Open Space Network Provision and Distribution, https://vpa.vic.gov.au/wpcontent/uploads/2018/02/Open-Space-Network-Provision-and-Distribution-Reduced-Size.pdf , p. 4-6

| Type of open space |          | Area     |
|--------------------|----------|----------|
|                    | Hectares | Per cent |
| Gardens            | 638      | 0.2      |
| Sports grounds     | 2 600    | 0.9      |
| Other types        | 2 960    | 1.0      |
| Total              | 288 161  | 100.0    |

Note: Open space for Metropolitan Melbourne includes only 'Public open space' and no restricted or private open space. Source: VPA Melbourne metropolitan open space network, https://data-

planvic.opendata.arcgis.com/datasets/da1c06e3ab6948fcb56de4bb3c722449\_0/about,

Vic DELWP Vicmap Features of Interest https://metashare.maps.vic.gov.au/geonetwork/srv/api/records/d257574b-6630-51f1a53e-a9a23c0de1c8/formatters/sdm-html?root=html&output=html#tab2

Given the large amount of public open space availability of any kind, this analysis focuses on open space such as parks & gardens, recreation corridors, and sports fields & organised recreation for Metropolitan Melbourne and parks, gardens, and sport grounds for Regional Victoria.<sup>60</sup> This means local councils and state government provide mixed passive and active open space for their communities.

We acknowledge that the data quality regarding open space availability is more reliable and comprehensive for Metropolitan Melbourne compared to Regional Victoria. As a result, this analysis should be considered as a high-level overview rather than a detailed and precise assessment.

The amount of open space in a particular catchment is often correlated with the residential density. That is, residents in high density areas with less or no private open space (e.g., backyard) demand more recreational open space, and to mitigate the urban heat island effect more green space is required and desired in high density areas.

This pattern can be observed across Victoria (chart B.3 and table B.4) where denser areas have on average more public open space as a share of total urban area. Not surprisingly, Melbourne's Growth Areas tend to have a relatively small share of open space compared to the other functional urban areas since those are yet to be fully developed.

<sup>&</sup>lt;sup>60</sup> This differs from the provision of community sport and recreation hubs, which provide dedicated small-sized hubs (<0.5 hectares), such as tennis and netball courts.



**B.3** Public open space provision in Victoria at a SA3 level<sup>61</sup>

Note: This includes Parks & Gardens, Recreation Corridors, and Sports Fields & Organised Recreation for Metropolitan Melbourne and Parks, Gardens, and Sport Grounds for Regional Victoria.

Data source: CIE.

| Functional Urban Area            | Open space | Median population<br>density | Median amount of open<br>space as a share of<br>urban area |
|----------------------------------|------------|------------------------------|------------------------------------------------------------|
|                                  | ha         | Residents/ha                 | Per cent                                                   |
| Inner Melbourne                  | 1 543      | 46.7                         | 10.8                                                       |
| Middle Melbourne                 | 3 956      | 25.7                         | 5.0                                                        |
| Outer Melbourne                  | 6 341      | 17.5                         | 3.9                                                        |
| Melbourne New Growth Area        | 2 042      | 8.7                          | 2.7                                                        |
| Regional City                    | 8 240      | 6.5                          | 5.3                                                        |
| Regional Centres and Rural Areas | 23 107     | 2.4                          | 3.7                                                        |

#### B.4 Current open space provision by functional urban area

Note: This includes Parks & Gardens, Recreation Corridors, and Sports fields & Organised Recreation for Metropolitan Melbourne and Parks, Gardens, and Sport Grounds for Regional Victoria. Open space amount based on SA3 Levels. *Source:* CIE.

## Approach to measure open space demand

There are several potential approaches to estimate the additional demand of open space. For the purpose of this analysis, we have adopted a benchmarking approach, i.e., additional open space provision is a function of 'meeting the benchmark' and 'population density.'

<sup>61</sup> The analysis of open space requirements and demand have been made on a Statistical Area 3 (SA3) level, as some high density SA2's have low amounts of open space within the area but are surrounded by parks and sport fields.

The benchmark is then set as being the current average provision rate by population density. This allows for detailed excess capacity and demand modelling on a SA3 level and reflects average open space provision and planning to date.

The benchmarking approach also aligns well with the housing model since the current provision of open space is internalised in the value of housing to date and allows a separate modelling of Greenfield versus Infill open space provision.

The approach is visualised in chart B.5 and based on the average open space provision by population density across Victoria. It can be summarised as follows:

- Greenfield open space provision at a minimum of 1.8 per cent of total urban area in the respective area irrespective of the population density based on the y-intercept of the linear trend (i.e., benchmark curve) and increasing along the slope with increasing population density.
- Infill open space provision:
  - SA3s above the benchmark curve have sufficient open space and excess capacity to accommodate growth. There is no additional open space provision until the excess capacity is used, at which point the additional provision rate follows the slope of the curve.
  - SA3s below the benchmark curve do not have sufficient open space and provide additional open space as indicated by the slope of the benchmark curve.
- Additional open space provision equals 1.6 percentage points for an additional 10 residents per hectare based on the slope of the benchmark curve.



#### B.5 Conceptual open space provision by SA3

Note: Underlying data behind this chart is provided at the end of this chapter. Data source: CIE.

Total open space provision and requirements are estimated based on the urban area within each area (SA3), while the urban area land take is increasing with development over time (see Appendix O for a detailed description of the land take methodology, and

for the type of meshblocks used as urban area proxy). Box B.6 outlines the definition of 'urban area' used in the context of the open space analysis.

#### B.6 Urban Area

The open space analysis is based on estimating the share of open space in SA3 regions. As many SA3's, in particular in regional areas, are large and not consistently populated we have defined urban areas within each SA3. We defined urban area based on ABS Meshblock data (B.7) which is the total area where people live, work and spent time, and include the following land use types:

- Education
- Commercial
- Residential
- Parkland (only if not conservation or reserves)
- Primary Production
- Other
- Industrial
- Hospital/Medical
- Transport

| FUA                              |          | Urban Area | Total Area |
|----------------------------------|----------|------------|------------|
|                                  | per cent | ha         | ha         |
| Inner Melbourne                  | 99%      | 18 275     | 18 400     |
| Middle Melbourne                 | 98%      | 73 352     | 74 482     |
| Outer Melbourne                  | 79%      | 164 687    | 208 697    |
| Melbourne New Growth Area        | 42%      | 111 059    | 262 227    |
| Regional City                    | 43%      | 129 551    | 303 234    |
| Regional Centres and Rural Areas | 3%       | 672 353    | 21 882 584 |
| Source: CIE.                     |          |            |            |

#### B.7 Urban Area by region

# Capacity in Victoria's Open Space Infrastructure

Current capacity has been estimated using the benchmarking approach outlined in the previous section. Any SA3 area which has a higher percentage of open space than the benchmark relative to the respective population density has capacity to accommodate future population growth up to the benchmark level. Based on the benchmarking approach, there is considerable capacity outside of Metropolitan Melbourne, while inner and middle Melbourne have overall no excess capacity. While there is no excess capacity within most of Metropolitan Melbourne (as some SA3s are below the benchmark), some SA3s can still serve some additional population (table B.8).

| Functional Urban Area            | Weighted excess capacity<br>(Difference between actual<br>open space provision and<br>benchmark) | Additional population<br>(That can be served by existing<br>open space) |
|----------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                                  | Per cent                                                                                         | No.                                                                     |
| Inner Melbourne                  | 0.2                                                                                              | 2 444                                                                   |
| Middle Melbourne                 | -0.9                                                                                             | 2 590                                                                   |
| Outer Melbourne                  | -0.9                                                                                             | 7 148                                                                   |
| Melbourne New Growth Area        | -1.3                                                                                             | 4 686                                                                   |
| Regional City                    | 1.8                                                                                              | 94 199                                                                  |
| Regional Centres and Rural Areas | 1.2                                                                                              | 55 335                                                                  |

| B.8 | Current exce | s capacit | y and | allowance | for | additional | ро | pulation |
|-----|--------------|-----------|-------|-----------|-----|------------|----|----------|
|-----|--------------|-----------|-------|-----------|-----|------------|----|----------|

Source: CIE.

Maps B.9 and B.10 show how much additional population growth each SA3 can accommodate relative to today:

- A large share of regional areas and cities have no open space excess capacity to accommodate an increase in population density assuming a constant urban area.
  - Some exceptions include the North of Victoria, Warrnambool, Ballarat and Geelong
- There is generally no excess capacity in North Growth, West Growth, and Sunbury/Diggers Rest Corridor and outer Melbourne infill areas.
- The remainder of the Melbourne Growth area (South-East corridor) has capacity for additional 10 to 50 per cent relative to the current population density.
- Inner Melbourne and middle Melbourne generally have very low excess capacity, except for Melbourne City which has a high share of open space that can accommodate increases in population density.

Overall, additional open space is needed across all scenarios and functional urban areas as population density until 2036 and 2056 will exceed current available provision by far (chart B.11).



**B.9** Significant and functional urban areas that can accommodate increase in population density by SA3

Note; Analysis is done on a SA3 level. Data source: CIE.

**B.10** Metropolitan Melbourne urban areas that can accommodate increase in population density by SA3



Note; Analysis is done on a SA3 level. Data source: CIE.



# **B.11** Additional population until 2056 and open space capacity by functional urban area and scenario

Data source: CIE.

## Additional open space requirement by population scenario

Under each population distribution scenario, the additional population is the same, however, population densities vary considerably. On average across the scenarios, 5.5 to 7 per cent more open space is needed to accommodate the increase in population density, while this share is higher the less dispersed the population scenario is. There are two main drivers for additional requirement:

- Change in population density, and
- Share of Infill versus Greenfield area.

The latter is highly relevant as there is a minimum open space provision for Greenfield independent of population density. This means scenarios which see extensive Greenfield development will ultimately require more open space than scenarios with development in infill areas. Infill areas are largely the inner, middle, and outer Melbourne functional urban areas.

In summary (chart B.12):

- The Compact City scenario sees the highest additional requirement in open space with 3 031 hectares, as over 67 per cent of the growth is happening in infill areas. Those areas see a large increase in population density which leads to additional open space requirements. In particular, inner and middle Melbourne account for more than half of the additional open space requirement as those areas see a 55 to 162 per cent increase in population density until 2056.
- The Consolidated City scenario differs only slightly from the Compact City scenario, with less growth in infill areas (56 per cent). The additional provision in open space equates to 2 841 hectares, while the difference to the Compact City scenario is driven by more Greenfield open space requirement.

- The Dispersed City scenario has the highest population growth in Melbourne's New Growth Areas across all scenarios with 38 per cent, followed by Infill areas with 38 per cent. This means that more open space must be provided in Greenfield areas across Victoria, but less is required in highly dense areas. In total 2 789 hectares of additional open space is needed, with the majority being where the population growth is occurring, in Melbourne's New Growth Areas and Regional Victoria.
- The Network of Cities scenario sees a very similar share of Greenfield development across Victoria as the Dispersed City scenario. As open space capacity is slightly higher in some parts of Regional Victoria, total additional open space requirement equals 2 451 hectares, which is the lowest across all scenarios.
- The Distributed State scenario assumes 49 per cent of population growth outside of Metropolitan Melbourne and 70 per cent in Greenfield areas across Victoria. Additional open space requirements are marginally higher than the Network of Cities scenario at 2 566 hectares.



#### B.12 Additional open space requirements, by scenario (2056)

## Costs of additional open space infrastructure provision

Total cost for providing more open space includes the land cost, capital and operating costs. Costs have been assumed to vary by regions, while the land cost differs by region and by type of development area. In addition, we have assumed:

- Greenfield areas: Land will be repurposed to open space, and
- Infill areas, which are usually land constrained:
  - Where there is already natural and semi-natural open space, this open space will be embellished. This is usually land in government ownership and will be the preferred method compared to acquiring new land in infill areas.<sup>62</sup>
  - Where there **is not** enough natural and semi-natural open space to be embellished, existing land will be transformed into open space.

<sup>62</sup> https://www.planning.vic.gov.au/\_\_data/assets/pdf\_file/0020/103169/3.1-Open-Space-Resource-Guide.pdf, p.1

| Functional Urban Area            | Greenfield    | Infill                                                     | Infill        |
|----------------------------------|---------------|------------------------------------------------------------|---------------|
|                                  | Purchase land | Embellishment of<br>government-owned<br>natural open space | Purchase land |
|                                  | \$/sqm        | \$/sqm                                                     | \$/sqm        |
| Inner Melbourne                  | NA            | 0                                                          | 5 322         |
| Middle Melbourne                 | NA            | 0                                                          | 2 517         |
| Outer Melbourne                  | 692           | 0                                                          | 1 095         |
| Melbourne New Growth Area        | 530           | 0                                                          | NA            |
| Regional City                    | 161           | 0                                                          | 480           |
| Regional Centres and Rural Areas | 20            | 0                                                          | 24            |

Land costs per square metre of required land are summarised in table B.13.

#### **B.13** Land cost for open space provision

Note: Land cost values are based on a weighted average of number of sales, median price per area, and median block size by region in Victoria. Greenfield values are based on the weighted average of land uses classified as Res Dev Site, Res Land (WithBuild), Vac Res A, Vac Res B, Vac Res C, Vac Res Englobo Other, Vac Res Rural style, Infill new only on ac Res A, Vac Res B, Vac Res C.. Source: Valuer-General Victoria Property sales statistics (2021), https://www.land.vic.gov.au/valuations/resources-andreports/property-sales-statistics

Capital and operating cost for public open space varies generally depending on the quality of open space. For example, establishing a small local park will be significantly less costly than providing active open space.

We have, therefore, based estimates for Greenfield areas, i.e., Melbourne New Growth Area and most of Regional Victoria, on VPA's Benchmark Infrastructure Costings for a 5-to-6-hectare park with sports and recreation facilities, which reflects a mixed passive and active open space park (table B.14).<sup>63</sup> Cost estimates for the remainder of Metropolitan Melbourne have been based on Developer Contributions Plans.

#### **B.14** Capital expenditure for open space provision

| Functional Urban Area            | Capital expenditure |
|----------------------------------|---------------------|
|                                  | \$2023/sqm          |
| Inner Melbourne                  | 357.3               |
| Middle Melbourne                 | 214.6               |
| Outer Melbourne                  | 214.6               |
| Melbourne New Growth Area        | 188.0               |
| Regional City                    | 188.0               |
| Regional Centres and Rural Areas | 188.0               |

Note: Rates have been escalated using the ABS Heavy and civil engineering construction Australia Index.

Source: Victorian Planning Authority Benchmark Infrastructure Report Table 2-1 (2019), https://vpa-web.s3.amazonaws.com/wpcontent/uploads/2019/10/Review-of-Benchmark-Infrastructure-Costings-Report-11-April-2019-FINAL-VERSION.pdf, VPA (2021) Arden Precinct Draft Development Contributions Plan https://vpa-web.s3.amazonaws.com/wp-content/uploads/2021/09/Arden-Precinct-Draft-Development-Contributions-Plan-August-2021.pdf, VPA (2018) East-Village Development Contribution Plan https://www.gleneira.vic.gov.au/media/5189/07-east-village-development-contribution-plan.pdf

<sup>63</sup> Victorian Planning Authority Benchmark Infrastructure Report (2019), https://vpaweb.s3.amazonaws.com/wp-content/uploads/2019/10/Review-of-Benchmark-Infrastructure-Costings-Report-11-April-2019-FINAL-VERSION.pdf

Operating expenditure is based on Frankston Council's open space asset management plan as the report provides management rates for turf, bushland, vegetation, and council facilities surrounds per hectare per year and converted to an operating cost per capital cost figure (table B.15). Total operating expenditure assumes that additional open space requirement is increasing linearly over time.

#### **B.15** Operating expenditure for open space provision

| Functional Urban Area            |            | Operating expenditure |
|----------------------------------|------------|-----------------------|
|                                  | % of CAPEX | \$2023/sqm            |
| Inner Melbourne                  | 1.3        | 4.6                   |
| Middle Melbourne                 | 1.3        | 2.8                   |
| Outer Melbourne                  | 1.3        | 2.8                   |
| Melbourne New Growth Area        | 1.3        | 2.4                   |
| Regional City                    | 1.3        | 2.4                   |
| Regional Centres and Rural Areas | 1.3        | 2.4                   |

Note: Rates have been escalated using the ABS Heavy and civil engineering construction Australia Index.

Source: Frankston Council's Open Space Asset Management Plan Table 10 (2017),

https://www.frankston.vic.gov.au/files/assets/public/planning-and-building/pdfs/open\_space\_asset\_management\_plan\_2017.pdf

The accuracy of the management rate has been verified by comparing total operating expenditure from the model for open space under the current provision to the total Victorian Local Government expenditure data from 2018-19 to 2020-21.<sup>64</sup>

#### Cost summary

We model the cost of providing additional open space infrastructure through managing demand and excess capacity at an SA3 area level.

The cost of providing additional open space infrastructure ranges between \$10.8 to \$26.1 billion across the scenarios.

The Compact City scenario has considerably higher cost than any other scenario with over \$26.1 billion mainly driven by the high land cost. On the other hand, the Consolidated City scenario requires only 7 per cent less open space, but costs are 35 per cent lower compared to the Compact City scenario at \$27.1 billion. The Dispersed City and Network of Cities scenarios have similar cost around \$14 and \$12.5 billion, followed

<sup>&</sup>lt;sup>64</sup> Average recurrent expenditure for Sports Grounds & Facilities and Parks & Reserves has been \$1.2 billion per year in 2023-dollars from 2018-19 to 2020-21. Applying the rates outlined in the table to our model of current open space provision, we estimate total operating expenditure at \$1.1 billion in 2023-dollars. While our figure is marginally lower, we have been advised by the Open Space for Everyone team at DEECA that publicly available data does not fully capture all available open space, which would lead to a slight underestimation of total available open space and therefore operating expenditure in our model.

Local Government Consultation & Council Data Recurrent expenditure for Sports Grounds & Facilities and Parks & Reserves, https://www.localgovernment.vic.gov.au/funding-programs/victoria-grants-commission/consultation-and-operations

by the Distributed State scenario which sees the lowest additional open space requirement and costs of \$10.8 billion.

As additional open space provision increases between scenarios, so do the cost. However, the open space requirement does not differ as much as the costs between scenarios. This is mainly driven by land cost, and to a smaller degree by capital and operating cost.

New open space in infill areas has a very high cost of land. In particular in the Compact City scenario large land areas are repurposed to open space. In contrast, in the Consolidated City scenario a larger share of additional open space can be met by embellishing existing natural and semi-natural open space which has no additional land cost.

|                                 | Sc1          | Sc2                  | Sc3            | Sc4               | Sc5               |
|---------------------------------|--------------|----------------------|----------------|-------------------|-------------------|
| Additional from<br>2021 to 2056 | Compact City | Consolidated<br>City | Dispersed City | Network of Cities | Distributed State |
|                                 | ha           | ha                   | ha             | ha                | ha                |
| Requirement                     | 3 031        | 2 841                | 2 789          | 2 451             | 2 566             |
|                                 | \$b          | \$b                  | \$b            | \$b               | \$b               |
| Capital Cost                    | 7.4          | 6.3                  | 5.7            | 5.2               | 5.2               |
| Operating Cost                  | 1.7          | 1.4                  | 1.3            | 1.2               | 1.2               |
| Land cost                       | 17.1         | 9.4                  | 7.0            | 6.2               | 4.4               |
| Total                           | 26.1         | 17.1                 | 14.0           | 12.5              | 10.8              |

#### B.16 Open space infrastructure impacts across scenarios, 2021 to 2056

Note: Total may not sum up due to rounding.

Source: CIE.

Overall, capital and land cost equate on average to \$275 million (Distributed State scenario) to \$699 million (Compact City scenario) per annum. This is in a similar order of magnitude what councils have spent in the past years. From 2018/19 to 2020/21, Local governments spent on average \$323 million on capital and land per year for parks and reserves.<sup>65</sup>

#### Distributional impacts

The variety of owners and managers of open space means the financing of those spaces and funding sources for them are inevitably complex. Funding streams include:<sup>66</sup>

- General revenues, council rates, trusts, and levies,
- Local open space contributions,

66 Victorian Government (2021), Open Space Strategy for Metropolitan Melbourne https://www.environment.vic.gov.au/\_\_data/assets/pdf\_file/0025/520594/Metro-Open-Space-Strategy-FA4-book-WEB.pdf, p.43

<sup>65</sup> Local Government Consultation & Council Data Capital Asset Outlays for Sports Grounds & Facilities and Parks & Reserves, https://www.localgovernment.vic.gov.au/funding-programs/victoriagrants-commission/consultation-and-operations

157

- Developers' contributions, and
- Other fees, charges and grants.

Additional open space is provided and funded through different ways:67

- Land contributions by the Victorian government to create new Capital City open space.
- Municipal open space for new communities to be funded by the Victorian government, Local Government and developers.
- Open space contributions by developers to provide for the demand created by forecast residents and workers. This includes land contributions from developers to create new Neighbourhood, Local and Small Local open space, and cash contributions for land purchase, open space establishment and upgrades.
- Allocations by the Local Government including land conversion or purchase to expand the open space network, and annual budget expenditure for open space establishment and upgrades.

To meet the objective of this analysis, we have assumed there are two groups of stakeholders that are responsible for funding open space:<sup>68</sup>

- Largely by developers, and
- Local and State Governments.

Developers have to contribute to the establishment of new open space and improvements of open space as part of the Developer Contribution Plans. These contributions are typically intended to mitigate the impact of new developments on the surrounding community and infrastructure, including the need for additional open space. As part of these requirements, developers may be obligated to provide land or cash contributions.

For example, under the Subdivision Act a developer who applies to subdivide land may be required to:<sup>69</sup>

- set aside up to 5 per cent of the land for public open space, or
- pay up to 5 per cent of the site value of the land, or
- a combination of both.

However, those rates can differ by council and can go up to 10 per cent.

We have assumed that 23 per cent of capital works and land cost will be funded by developers and 14 per cent by the State Government. This is based on the average share of (non-recurrent) contributions relative to the capital outlays for parks and reserves by

<sup>67</sup> City of Melbourne Open Space Strategy (2012) https://www.melbourne.vic.gov.au/SiteCollectionDocuments/open-space-contributionsframework.pdf, p.1

<sup>&</sup>lt;sup>68</sup> Australian Social & Recreation (ASR) Research Pty Ltd (2009), Guide to social infrastructure planning, Appendix 3, available at: https://vpa-web.s3.amazonaws.com/wp-content/uploads/2016/07/Guide-to-Social-Infrastructure-Planning.pdf

<sup>69</sup> https://www.planning.vic.gov.au/policy-and-strategy/infrastructure-contributions

Local Governments from 2018/19 to 2020/21.<sup>70</sup> Operating expenditures are funded solely by the Local Government. Table B.17 and chart B.18 summarise the costs funded by stakeholder.

| Cost item      | Stakeholder      | Sc1             | Sc2                   | Sc3               | Sc4                  | Sc5                  |
|----------------|------------------|-----------------|-----------------------|-------------------|----------------------|----------------------|
|                |                  | Compact<br>City | Consolidate<br>d City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                |                  | \$b             | \$b                   | \$b               | \$b                  | \$b                  |
| Capital Cost   | Developer        | 1.7             | 1.4                   | 1.3               | 1.2                  | 1.2                  |
|                | State Government | 1.0             | 0.9                   | 0.8               | 0.7                  | 0.7                  |
|                | Local Government | 4.7             | 3.9                   | 3.6               | 3.3                  | 3.3                  |
| Operating Cost | Local Government | 1.7             | 1.4                   | 1.3               | 1.2                  | 1.2                  |
| Land cost      | Developer        | 3.9             | 2.2                   | 1.6               | 1.4                  | 1.0                  |
|                | State Government | 2.4             | 1.3                   | 1.0               | 0.9                  | 0.6                  |
|                | Local Government | 10.8            | 5.9                   | 4.4               | 3.9                  | 2.8                  |
| Total          | Developer        | 5.6             | 3.6                   | 2.9               | 2.6                  | 2.2                  |
|                | State Government | 3.4             | 2.2                   | 1.8               | 1.6                  | 1.4                  |
|                | Local Government | 17.1            | 11.3                  | 9.3               | 8.3                  | 7.3                  |
| Grand Total    |                  | 26.1            | 17.1                  | 14.0              | 12.5                 | 10.8                 |

# B.17 Open space infrastructure impacts across scenarios 2021 to 2056, by stakeholder

Source: CIE.



#### **B.18** Share of funding by stakeholder

Data source: CIE.

<sup>70</sup> Local Government Consultation & Council Data Recurrent expenditure Parks & Reserves, https://www.localgovernment.vic.gov.au/funding-programs/victoria-grantscommission/consultation-and-operations

# Detailed current open space provision by SA3

## **B.19** Current open space provision by SA3

| SA3<br>Code | SA3 Name                          | Urban area<br>(2021) | Open space      | Pop' density | Open space<br>share |
|-------------|-----------------------------------|----------------------|-----------------|--------------|---------------------|
|             |                                   | km <sup>2</sup>      | km <sup>2</sup> | Pop/ha       | Per cent            |
| 20101       | Ballarat                          | 319.1                | 16.9            | 3.6          | 5.3                 |
| 20102       | Creswick - Daylesford - Ballan    | 259.8                | 9.3             | 1.2          | 3.6                 |
| 20103       | Maryborough - Pyrenees            | 307.1                | 5.9             | 0.9          | 1.9                 |
| 20201       | Bendigo                           | 263.0                | 6.5             | 4.0          | 2.5                 |
| 20202       | Heathcote - Castlemaine - Kyneton | 956.2                | 10.4            | 0.5          | 1.1                 |
| 20203       | Loddon - Elmore                   | 212.8                | 5.3             | 0.5          | 2.5                 |
| 20301       | Barwon - West                     | 65.3                 | 3.8             | 3.3          | 5.8                 |
| 20302       | Geelong                           | 288.1                | 16.0            | 7.4          | 5.5                 |
| 20303       | Surf Coast - Bellarine Peninsula  | 131.1                | 11.4            | 6.9          | 8.7                 |
| 20401       | Upper Goulburn Valley             | 464.5                | 11.3            | 1.3          | 2.4                 |
| 20402       | Wangaratta - Benalla              | 214.4                | 13.8            | 2.2          | 6.4                 |
| 20403       | Wodonga - Alpine                  | 344.3                | 23.9            | 2.2          | 6.9                 |
| 20501       | Baw Baw                           | 235.8                | 4.8             | 2.4          | 2.0                 |
| 20502       | Gippsland - East                  | 499.9                | 7.0             | 1.0          | 1.4                 |
| 20503       | Gippsland - South West            | 135.3                | 12.9            | 5.1          | 9.6                 |
| 20504       | Latrobe Valley                    | 242.7                | 9.7             | 3.1          | 4.0                 |
| 20505       | Wellington                        | 211.0                | 8.4             | 2.1          | 4.0                 |
| 20601       | Brunswick - Coburg                | 20.4                 | 1.1             | 49.1         | 5.3                 |
| 20602       | Darebin - South                   | 14.0                 | 0.8             | 41.8         | 5.9                 |
| 20603       | Essendon                          | 18.2                 | 1.4             | 41.2         | 7.7                 |
| 20604       | Melbourne City                    | 30.5                 | 4.5             | 54.9         | 14.9                |
| 20605       | Port Phillip                      | 25.5                 | 2.8             | 44.5         | 11.2                |
| 20606       | Stonnington - West                | 11.9                 | 0.4             | 58.7         | 3.0                 |
| 20607       | Yarra                             | 20.6                 | 2.2             | 49.4         | 10.8                |
| 20701       | Boroondara                        | 60.0                 | 3.1             | 29.7         | 5.1                 |
| 20702       | Manningham - West                 | 48.7                 | 3.1             | 20.7         | 6.4                 |
| 20703       | Whitehorse - West                 | 38.1                 | 1.8             | 29.6         | 4.8                 |
| 20801       | Bayside                           | 37.2                 | 1.6             | 28.7         | 4.3                 |
| 20802       | Glen Eira                         | 40.7                 | 1.7             | 40.4         | 4.2                 |
| 20803       | Kingston                          | 69.3                 | 3.2             | 18.7         | 4.6                 |
| 20804       | Stonnington - East                | 13.7                 | 0.9             | 33.1         | 6.5                 |
| 20901       | Banyule                           | 62.6                 | 3.8             | 21.0         | 6.0                 |
| 20902       | Darebin - North                   | 39.3                 | 3.2             | 27.0         | 8.2                 |

| SA3<br>Code | SA3 Name                     | Urban area<br>(2021) | Open space | Pop' density | Open space<br>share |
|-------------|------------------------------|----------------------|------------|--------------|---------------------|
|             |                              | km <sup>2</sup>      | km²        | Pop/ha       | Per cent            |
| 20903       | Nillumbik - Kinglake         | 297.4                | 4.0        | 2.3          | 1.3                 |
| 20904       | Whittlesea - Wallan          | 551.4                | 8.1        | 4.7          | 1.5                 |
| 21001       | Keilor                       | 42.4                 | 2.3        | 15.2         | 5.3                 |
| 21002       | Macedon Ranges               | 214.2                | 3.5        | 1.6          | 1.6                 |
| 21003       | Moreland - North             | 30.3                 | 2.0        | 28.3         | 6.7                 |
| 21004       | Sunbury                      | 75.6                 | 1.6        | 6.1          | 2.1                 |
| 21005       | Tullamarine - Broadmeadows   | 214.4                | 4.5        | 9.5          | 2.1                 |
| 21101       | Knox                         | 109.4                | 4.3        | 15.0         | 3.9                 |
| 21102       | Manningham - East            | 64.6                 | 0.9        | 4.2          | 1.4                 |
| 21103       | Maroondah                    | 61.2                 | 4.2        | 19.3         | 6.8                 |
| 21104       | Whitehorse - East            | 26.6                 | 1.2        | 24.6         | 4.7                 |
| 21105       | Yarra Ranges                 | 224.3                | 13.6       | 7.1          | 6.1                 |
| 21201       | Cardinia                     | 267.8                | 7.2        | 4.4          | 2.7                 |
| 21202       | Casey - North                | 104.4                | 5.6        | 13.5         | 5.4                 |
| 21203       | Casey - South                | 181.4                | 10.3       | 12.6         | 5.7                 |
| 21204       | Dandenong                    | 128.6                | 4.9        | 15.6         | 3.8                 |
| 21205       | Monash                       | 79.5                 | 3.9        | 23.9         | 4.8                 |
| 21301       | Brimbank                     | 106.8                | 8.0        | 18.2         | 7.5                 |
| 21302       | Hobsons Bay                  | 61.1                 | 4.1        | 15.0         | 6.8                 |
| 21303       | Maribyrnong                  | 31.2                 | 2.0        | 30.1         | 6.4                 |
| 21304       | Melton - Bacchus Marsh       | 221.3                | 8.1        | 9.0          | 3.7                 |
| 21305       | Wyndham                      | 321.6                | 8.8        | 9.2          | 2.7                 |
| 21401       | Frankston                    | 118.5                | 5.1        | 12.1         | 4.3                 |
| 21402       | Mornington Peninsula         | 366.0                | 6.2        | 4.6          | 1.7                 |
| 21501       | Grampians                    | 434.5                | 16.1       | 1.4          | 3.7                 |
| 21502       | Mildura                      | 174.2                | 7.6        | 3.2          | 4.3                 |
| 21503       | Murray River - Swan Hill     | 91.4                 | 9.5        | 4.0          | 10.4                |
| 21601       | Campaspe                     | 151.5                | 16.2       | 2.5          | 10.7                |
| 21602       | Moira                        | 49.6                 | 4.8        | 6.0          | 9.6                 |
| 21603       | Shepparton                   | 137.9                | 14.6       | 4.9          | 10.6                |
| 21701       | Glenelg - Southern Grampians | 571.2                | 12.7       | 0.6          | 2.2                 |
| 21703       | Colac - Corangamite          | 337.4                | 6.0        | 1.1          | 1.8                 |
| 21704       | Warrnambool                  | 143.9                | 27.2       | 3.6          | 18.9                |

Source: CIE, ABS Meshblocks (2021), VPA Melbourne metropolitan open space network, https://dataplanvic.opendata.arcgis.com/datasets/da1c06e3ab6948fcb56de4bb3c722449\_0/about,

Vic DELWP Vicmap Features of Interest https://metashare.maps.vic.gov.au/geonetwork/srv/api/records/d257574b-6630-51f1-a53e-a9a23c0de1c8/formatters/sdm-html?root=html&output=html#tab2

# C Community facilities

- Requirement for additional community facility hubs until 2056 ranges between 292 and 407 (total number of hubs) across the different scenarios, which includes Health & Wellbeing hubs, Sport & Recreation hubs, Aquatic Centres, and Art & Cultural hubs. The Compact City scenario sees the highest additional provision and the Distributed State scenario the least.
  - The main driver of additional provision is population growth in urban areas, i.e., Metropolitan Melbourne and Regional Cities, as the central case assumes that there is sufficient excess capacity in regional Victoria.
- Total expected costs for additional community infrastructure until 2056 are highest for the Compact City scenario (over \$24.4 billion), followed by the Consolidated City scenario with over \$20.6 billion and the Network of Cities scenario with over \$18.4 billion. The least cost is estimated for the Dispersed City and Distributed State scenarios with over \$17.5 and \$13.7 billion, respectively.
  - The main driver of costs is the additional provision of community facilities. For scenarios with high infill development the main drivers are also land cost, and higher construction costs in inner Melbourne due to greater complexity.

|                              | Sc1          | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|------------------------------|--------------|----------------------|----------------|----------------------|----------------------|
| Additional from 2021<br>2056 | Compact City | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                              | No.          | No.                  | No.            | No.                  | No.                  |
| Facilities / Hubs            | 407          | 382                  | 375            | 379                  | 292                  |
|                              | \$b          | \$b                  | \$b            | \$b                  | \$b                  |
| Capital Cost                 | 11.8         | 10.5                 | 9.7            | 10.1                 | 7.6                  |
| Operating Cost               | 5.6          | 5.0                  | 4.7            | 4.8                  | 3.6                  |
| Land Cost                    | 7.0          | 5.1                  | 3.1            | 3.5                  | 2.5                  |
| Total                        | 24.4         | 20.6                 | 17.5           | 18.4                 | 13.7                 |

#### C.1 Community infrastructure impacts across scenarios

Note: Total may not sum up due to rounding.

Source: CIE.

Community infrastructure refers to the physical and social assets that are essential for communities to thrive. These facilities can include a range of amenities community centres, libraries, health clinics, sports facilities, and cultural spaces. They play a critical role in fostering social cohesion, supporting economic growth, and promoting public health and wellbeing.

The provision of local community infrastructure in Victoria is also informed by a range of guidelines and standards developed by government agencies such as the Department of Health<sup>71</sup>, Sport and Recreation Victoria<sup>72</sup>, and Creative Victoria<sup>73</sup>. These guidelines provide best practices for designing and delivering community facilities that meet the needs of diverse communities and promote social inclusion.

Community infrastructure covers a wide range of different facilities, many of them such as large cultural and sporting facilities will serve big catchments and will be planned on a state level. In this report, we will focus on local community infrastructure and three different types of community facility hubs as outlined in the Fishermans Bend Community Infrastructure Plan and delivery models:<sup>74</sup>

- Health and wellbeing hubs
- Sport and recreation hubs and additional aquatic centre, and
- Art and cultural hubs.

Sport and recreation hubs differ from open space as they offer sport pavilions, and designated facilities such as tennis or netball courts.

A short description of the hubs is provided in table C.2 and a summary of the key provision and size assumptions in table C.3. Note that inner Melbourne provision is generally assumed to be two-storey facilities due to site constraints, while for other functional urban areas the provision will be a one-storey building. Each facility has a carpark and is usually based on the floor to site area ratio from the VPA Benchmark Infrastructure & Cost Guide.

| C.2 | Community | facility | provision |
|-----|-----------|----------|-----------|
|-----|-----------|----------|-----------|

| Area                                         | Description                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Health and wellbeing hubs                    | Public community health, wellbeing and justice support services including services<br>such as specialist medical treatment, nursing care, allied health, dental services,<br>counselling services (financial, domestic violence, etc), antenatal and postnatal<br>clinics, district nursing, primary injury, services for children (immunisation, speech<br>therapy, etc) and community mental health. |
| Sport and recreation hubs and aquatic centre | Provide multipurpose courts for netball, basketball, tennis, etc, and have at least one large multipurpose room for activities such as gymnastics, dance, table tennis and fitness classes, and aquatic centres at some locations                                                                                                                                                                      |
| Art and cultural hubs                        | Library and community gatherings spaces                                                                                                                                                                                                                                                                                                                                                                |

- 71 https://www.health.vic.gov.au/community-health/community-health-services and https://www.health.vic.gov.au/community-health/community-health-integrated-programchip-guidelines
- 72 https://sport.vic.gov.au/our-work/infrastructure/community-infrastructure and https://sport.vic.gov.au/\_\_data/assets/pdf\_file/0020/188021/13363-CSVE-Active-Vic-Strategic-Framework\_Sport-and-Rec\_FA2\_WEB.pdf
- 73 https://creative.vic.gov.au/\_\_data/assets/pdf\_file/0005/2099678/Creative-State-2025-1.pdf
- <sup>74</sup> Department of Environment, Land, Water and Planning (2017), Fishermans Bend Community Infrastructure Plan, p. 63-77,

https://www.fishermansbend.vic.gov.au/\_\_data/assets/pdf\_file/0018/31671/Community-Infrastructure-Plan\_-FB-Taskforce\_Sep-2017.pdf

Source: IV Education guidance note

| Functional Urban Area<br>(FUA)                                   | Provision Rate              | Floor Area         | Site Area <sup>a</sup> | Description            |  |
|------------------------------------------------------------------|-----------------------------|--------------------|------------------------|------------------------|--|
|                                                                  | per additional<br>residents | hectares           | hectares               |                        |  |
| Inner Melbourne                                                  |                             |                    |                        |                        |  |
| Health & wellbeing hub                                           | 40 000 <sup>75</sup>        | 0.40 <sup>76</sup> | 0.53                   | 2 Storeys with Carpark |  |
| Sport & recreation hub                                           | 20 00077                    | 0.30 <sup>78</sup> | 0.45                   | 2 Storeys with Carpark |  |
| Aquatic centre                                                   | 65 000 <sup>79</sup>        | NA                 | 1.60 <sup>80</sup>     | Centre with Carpark    |  |
| Art and cultural hub                                             | 30 000 <sup>81</sup>        | 0.1582             | 0.41                   | 2 Storeys with Carpark |  |
| Middle, outer and Melbourne new growth area, and regional cities |                             |                    |                        |                        |  |
| Health & wellbeing hub                                           | 40 000                      | 0.40               | 0.73                   | 1 Storey with Carpark  |  |
| Sport & recreation hub                                           | 20 000                      | 0.30               | 0.60                   | 1 Storey with Carpark  |  |
| Aquatic centre                                                   | 65 000                      | NA                 | 2.50                   | Centre with Carpark    |  |
| Art and cultural hub                                             | 30 000                      | 0.15               | 0.48                   | 1 Storey with Carpark  |  |

#### C.3 Provision and Size assumptions for inner Melbourne and other regions

a Includes outside area and carpark.

Source: CIE.

## Capacity in Victoria's Community Infrastructure

Estimating the excess capacity of community infrastructure in Victoria can be a complex task due to various factors. One of the primary reasons is that community infrastructure encompasses a wide range of facilities, such as community centres, libraries, and sports

- <sup>75</sup> Department of Environment, Land, Water and Planning (2017), Fishermans Bend Community Infrastructure Plan, p. 21
- <sup>76</sup> Victorian Government 2017, Fishermans Bend Community Infrastructure Plan, Community-Infrastructure-Plan\_-FB-Taskforce\_Sep-2017.pdf (fishermansbend.vic.gov.au) page 72 – Average Health and Wellbeing size
- <sup>77</sup> Infrastructure Victoria (2019) Infrastructure Provision in Different Development Settings: Metropolitan Melbourne, Volume 2 Technical Appendix, p.70 – Council Indoor recreation centre provision
- <sup>78</sup> Ibid., p.70 Council Indoor recreation centre site area, and VPA Benchmark Infrastructure & Cost Guide – Appendix 3: Sports Pavilions - Site to Floor Area ratio
- 79 Infrastructure Victoria 2021 Background paper Social infrastructure in Melbourne's new growth areas (infrastructurevictoria.com.au) Page 19 – Average existing provision in 2021.
- 80 Australian Social & Recreational Research Pty Ltd, Planning for Community Infrastructure in Growth Areas 2008, p.35 – Minimum size for Inner Melbourne and Average Size for remainder, https://vpa.vic.gov.au/wp-

 $content/Assets/Files/Planning\_for\_Community\_Infrastructure\_in\_Growth\_Areas\_Apr08.pdf$ 

- 81 Infrastructure Victoria (2019) Infrastructure Provision in Different Development Settings: Metropolitan Melbourne, Volume 2 Technical Appendix, p.70 – Library Level 3 & 4 provision
- 82 VPA Benchmark Infrastructure & Cost Guide Appendix 3: Community Facilities Level 3 with Library

facilities, each with its unique capacity and usage patterns. As a result, it is challenging to develop a standardised methodology to estimate excess capacity across these different types of facilities.

For the purpose of this analysis the various types have been aggregated in three high-level types. The aggregation of various community facilities can result in a loss of granularity and may not fully capture the nuances of the infrastructure's excess capacity. Furthermore, there are data gaps in terms of reliable data on usage patterns and capacity by facility.

For the reasons outlined above high-level assumptions have been made about the currently existing excess capacity (table C.4). Those will be tested and revisited in the sensitivity analysis.

| Area                             | Excess capacity assumption                              |
|----------------------------------|---------------------------------------------------------|
| Inner Melbourne                  | 0 per cent <sup>83</sup>                                |
| Middle & outer Melbourne         | 20 per cent, with sensitivity of 0 and 30 per cent      |
| Melbourne new growth areas       | 5 per cent                                              |
| Regional cities                  | 20 per cent, with sensitivity of 0 and 30 per cent      |
| Regional centres and rural areas | No capacity constraint, with sensitivity of 50 per cent |

#### C.4 Excess capacity assumptions

Source: CIE.

## Cost of additional community facilities

Total cost for providing additional community facilities includes the opportunity cost of land, capital, and operating costs. Costs have been assumed to vary by regions, while the land cost differs by region and by type of development area.

Land cost per square metre of required land is summarised in table C.5.

#### C.5 Land cost for community facilities

| Functional Urban Area            | Greenfield | Infill |
|----------------------------------|------------|--------|
|                                  | \$/sqm     | \$/sqm |
| Inner Melbourne                  | NA         | 5 322  |
| Middle Melbourne                 | NA         | 2 517  |
| Outer Melbourne                  | 692        | 1 095  |
| Melbourne New Growth Area        | 530        | NA     |
| Regional City                    | 161        | 480    |
| Regional Centres and Rural Areas | 20         | 24     |

83 Victorian Government 2017, Fishermans Bend Community Infrastructure Plan, Community-Infrastructure-Plan\_-FB-Taskforce\_Sep-2017.pdf (fishermansbend.vic.gov.au) page 9 Note: Land cost values are based on a weighted average of number of sales, median price per area, and median block size by region in Victoria. Greenfield values are based on the weighted average of land uses classified as Res Dev Site, Res Land (WithBuild), Vac Res A, Vac Res B, Vac Res C, Vac Res Englobo Other, Vac Res Rural style, Infill new only on ac Res A, Vac Res B, Vac Res C.. Source: Valuer-General Victoria Property sales statistics (2021), https://www.land.vic.gov.au/valuations/resources-andreports/property-sales-statistics

Capital and operating cost for community facilities vary by type and area of development. Cost estimates used in this analysis are summarised in table C.6. Capital cost for developments in inner Melbourne have been escalated by 42 per cent, recognising the complexity of development in high density areas as well as the potential demolition cost.<sup>84</sup> Total operating expenditure assumes that additional community infrastructure requirement is increasing linearly over time.

| Functional Urban Area<br>(FUA)                               | CAPEX               |                 | OPEX              |  |  |  |
|--------------------------------------------------------------|---------------------|-----------------|-------------------|--|--|--|
|                                                              | \$m, 2023           | \$m/annum, 2023 | % of CAPEX        |  |  |  |
| Inner Melbourne                                              |                     |                 |                   |  |  |  |
| Health & wellbeing hub                                       | 90.7985             | 2.49            | 2.7 <sup>86</sup> |  |  |  |
| Sport & recreation hub                                       | 13.39 <sup>87</sup> | 0.37            | 2.7               |  |  |  |
| Aquatic centre                                               | 78.8288             | 2.16            | 2.7               |  |  |  |
| Art and cultural hub                                         | 17.2789             | 0.47            | 2.7               |  |  |  |
| Middle, Outer and Growth Area Melbourne, and Regional Cities |                     |                 |                   |  |  |  |
| Health & wellbeing hub                                       | 63.99               | 1.75            | 2.7               |  |  |  |
| Sport & recreation hub                                       | 9.60                | 0.26            | 2.7               |  |  |  |
| Aquatic centre                                               | 55.55               | 1.52            | 2.7               |  |  |  |
| Art and cultural hub                                         | 14.65               | 0.47            | 2.7               |  |  |  |

#### C.6 Capital expenditure by type of community facility

Note: Estimates from sources have been escalated to \$2023 dollars with the ABS Heavy and civil engineering construction index. Source: CIE.

- 85 Victorian Government 2021-22 Budget Paper 3 page 69 https://s3-ap-southeast-2.amazonaws.com/budgetfiles202122.budget.vic.gov.au/2021-22+State+Budget+-+Service+Delivery.pdf – Average cost per community hospital
- 86 Asset Management and Maintenance by Councils, https://www.audit.vic.gov.au/report/asset-management-and-maintenancecouncils?section=32425
- <sup>87</sup> Based on VPA Benchmark Infrastructure & Cost Guide see appendix B and tables 9.11 and
  2.2 for design and costing detail
- <sup>88</sup> Infrastructure Victoria 2021 Background paper Social infrastructure in Melbourne's new growth areas (infrastructurevictoria.com.au) Page 8 & 11 – Average cost for Aquatic Centres based on two case studies
- <sup>89</sup> Based on VPA Benchmark Infrastructure & Cost Guide Community Facilities Level 3 with Library - see appendix B and tables 8.9 for design and costing detail

<sup>&</sup>lt;sup>84</sup> This is based on the relative cost difference between greenfield and infill construction and development cost. Infrastructure Victoria (2019) *Infrastructure Provision in Different Development Settings: Metropolitan Melbourne, Volume 2 Technical Appendix,* p.4-5

### Cost summary

We model the cost and demand of providing additional community facilities through managing demand and excess capacity at a population level by SA2. This implies that facilities are scaled to the appropriate size conditional on the additional population growth. This approach has been taken as it allows to estimate conservatively and subsequently to aggregate total numbers on a functional urban area level.

The cost of providing additional community infrastructure ranges between \$13.7 and \$24.4 billion across scenarios.

Across scenarios, total costs are mainly driven by the population growth occurring in inner Melbourne, as those facilities are more costly in terms of construction and land cost. Scenarios with a high share of population growth in regional areas (outside of regional cities) have generally lower costs given the central assumption of no capacity constraint in those areas.

|                              | Sc1          | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|------------------------------|--------------|----------------------|----------------|----------------------|----------------------|
| Additional from 2021<br>2056 | Compact City | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                              | No.          | No.                  | No.            | No.                  | No.                  |
| Facilities / Hubs            | 407          | 382                  | 375            | 379                  | 292                  |
|                              | \$b          | \$b                  | \$b            | \$b                  | \$b                  |
| Capital Cost                 | 11.8         | 10.5                 | 9.7            | 10.1                 | 7.6                  |
| Operating Cost               | 5.6          | 5.0                  | 4.7            | 4.8                  | 3.6                  |
| Land Cost                    | 7.0          | 5.1                  | 3.1            | 3.5                  | 2.5                  |
| Total                        | 24.4         | 20.6                 | 17.5           | 18.4                 | 13.7                 |

#### C.7 Community infrastructure impacts across scenarios

Note: Total may not sum up due to rounding. Source: CIE.

#### Sensitivity analysis

As noted, excess capacity assumptions have not been verified by actual data. The sensitivity analysis accounts for that uncertainty by testing alternative excess capacity rates:

- No change for inner Melbourne and Melbourne new growth areas
- Middle & outer Melbourne: 0 and 30 per cent
- Regional cities: 0 and 30 per cent
- Regional centres and rural areas: 50 per cent

Overall, the ranking of the results does not change. However, the Dispersed City scenario has the highest variability in cost due to the included capacity constraint in the sensitivity analysis.
|                                            | Sc1             | Sc2                   | Sc3               | Sc4                  | Sc5                  |
|--------------------------------------------|-----------------|-----------------------|-------------------|----------------------|----------------------|
| Additional from 2021 2056                  | Compact<br>City | Consolidate<br>d City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                            | No.             | No.                   | No.               | No.                  | No.                  |
| Facilities / Hubs - Central                | 407             | 382                   | 375               | 379                  | 292                  |
| Facilities / Hubs – Lower excess capacity  | 530             | 516                   | 507               | 505                  | 490                  |
| Facilities / Hubs – Higher excess capacity | 373             | 345                   | 346               | 350                  | 265                  |
|                                            | \$b             | \$b                   | \$b               | \$b                  | \$b                  |
| Total Cost – Central                       | 24.4            | 20.6                  | 17.5              | 18.4                 | 13.7                 |
| Total Cost – Lower excess capacity         | 29.4            | 26.0                  | 22.9              | 23.6                 | 21.9                 |
| Total Cost – Higher excess capacity        | 22.6            | 18.7                  | 16.1              | 17.0                 | 12.5                 |

#### C.8 Community infrastructure impacts across scenarios, sensitivity analysis

Note: Total may not sum up due to rounding.

Source: CIE.

# Distributional impacts

The variety of owners and managers of community facilities means the financing of those facilities and funding sources for them are inevitably complex.

To meet the objective of this analysis, we have assumed there are three groups of stakeholders that are responsible for funding community facilities:

- Government (Victorian and Local), and
- Developers.

We have assumed that 8 per cent of capital works and land cost will be funded by developers and 21 per cent by the State Government. This is based on the average share of (non-recurrent) contributions relative to the capital outlays for recreation & culture and family & community services by Local Governments from 2018/19 to 2020/21.<sup>90</sup> Operating expenditures are funded solely by the Local Government.

Table C.9 and chart C.10 summarise the costs funded by stakeholder.

#### C.9 Community infrastructure funding by stakeholder (2056)

| Cost item    | Stakeholder      | Sc1          | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|--------------|------------------|--------------|----------------------|-------------------|----------------------|----------------------|
|              |                  | Compact City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|              |                  | \$b          | \$b                  | \$b               | \$b                  | \$b                  |
| Capital Cost | Developer        | 0.9          | 0.8                  | 0.8               | 0.8                  | 0.6                  |
|              | Local Government | 8.4          | 7.4                  | 6.9               | 7.2                  | 5.4                  |
|              | State Government | 2.5          | 2.2                  | 2.0               | 2.1                  | 1.6                  |

<sup>90</sup> Local Government Consultation & Council Data Recurrent expenditure Parks & Reserves, https://www.localgovernment.vic.gov.au/funding-programs/victoria-grantscommission/consultation-and-operations

| Cost item      | Stakeholder      | Sc1          | Sc2                  | Sc3               | Sc4                  | Sc5                  |
|----------------|------------------|--------------|----------------------|-------------------|----------------------|----------------------|
|                |                  | Compact City | Consolidated<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                |                  | \$b          | \$b                  | \$b               | \$b                  | \$b                  |
| Operating Cost | Local Government | 5.6          | 5.0                  | 4.7               | 4.8                  | 3.6                  |
| Land cost      | Developer        | 0.6          | 0.4                  | 0.2               | 0.3                  | 0.2                  |
|                | Local Government | 5.0          | 3.6                  | 2.2               | 2.5                  | 1.8                  |
|                | State Government | 1.5          | 1.1                  | 0.7               | 0.7                  | 0.5                  |
| Total          | Developer        | 1.5          | 1.2                  | 1.0               | 1.1                  | 0.8                  |
|                | Local Government | 19.0         | 16.1                 | 13.8              | 14.5                 | 10.8                 |
|                | State Government | 3.9          | 3.3                  | 2.7               | 2.9                  | 2.1                  |
| Grand Total    |                  | 24.4         | 20.6                 | 17.5              | 18.4                 | 13.7                 |

Note: Figures are denoted in real \$2022/23 dollars.

Source: CIE



#### C.10 Share of funding by stakeholder (\$b)

Data source: CIE.

# Community Facility design

#### C.11 Sport and Recreation hub, 0.45-hectare site area

| Group     | Sub Item                                        | Qty   | Unit | Rate (P50) | Amount<br>(P50) | Rate (P90) | Amount<br>(P90) |
|-----------|-------------------------------------------------|-------|------|------------|-----------------|------------|-----------------|
|           |                                                 |       |      | \$2019     | \$2019          | \$2019     | \$2019          |
| Buildings | Site Preparation                                | 3,000 | m2   | -          | -               | -          | -               |
|           | Change Rooms With<br>Toilets and Showers X<br>6 | 687   | m2   | 2,408      | 1,654,385       | 2,445      | 1,679,895       |

| Group         | Sub Item                                     | Qty   | Unit            | Rate (P50) | Amount<br>(P50) | Rate (P90) | Amount<br>(P90) |
|---------------|----------------------------------------------|-------|-----------------|------------|-----------------|------------|-----------------|
|               |                                              |       |                 | \$2019     | \$2019          | \$2019     | \$2019          |
|               | Umpire Change Rooms with Toilets             | 172   | m2              | 2,519      | 432,694         | 2,595      | 445,677         |
|               | Storage Rooms                                | 344   | m2              | 2,414      | 829,288         | 2,406      | 826,526         |
|               | Multipurpose Room/<br>Social Room            | 429   | m2              | 2,365      | 1,015,690       | 2,330      | 1,000,516       |
|               | Office/ First Aid Room                       | 86    | m2              | 2,352      | 201,952         | 2,360      | 202,696         |
|               | Canteen and Kitchen                          | 115   | m2              | 2,515      | 287,963         | 2,525      | 289,108         |
|               | Public Toilet                                | 172   | m2              | 1,239      | 212,742         | 1,586      | 272,375         |
|               | Netball Court                                | 1     | No              | 83,143     | 83,143          | 98,076     | 98,076          |
|               | Tennis Court                                 | 1     | No              | 65,423     | 65,423          | 72,602     | 72,602          |
|               | Lighting Netball Court                       | 1     | No              | 22,803     | 22,803          | 24,396     | 24,396          |
|               | Lighting Tennis                              | 1     | No              | 21,416     | 21,416          | 24,493     | 24,493          |
| Landscaping   | Landscaping<br>Construction                  | 1,253 | m2              | 20         | 25,419          | 26         | 32,827          |
|               | Landscaping<br>Establishment (12wk)          | 1,253 | m2              | 1          | 1,404           | 1          | 1,617           |
|               | Landscape<br>maintenance-1 year/2<br>summers | 1,253 | m2              | 3          | 3,635           | 3          | 3,685           |
| Car Parking   | Pavement                                     | 247   | m2              | 95         | 23,360          | 109        | 26,939          |
|               | Kerb and Channel                             | 40    | m               | 55         | 2,180           | 60         | 2,380           |
|               | Drainage Pipes                               | 45    | m               | 177        | 7,987           | 193        | 8,663           |
|               | Drainage Pits                                | 2     | No              | 2,612      | 5,172           | 2,803      | 5,549           |
|               | Car Park Lighting                            | 231   | m2              | 15         | 3,502           | 17         | 4,007           |
|               | Linemarking/ Signage                         | 247   | m2/pav<br>ement | 3          | 804             | 4          | 1,004           |
| Site Works    | Site Preparation                             | 4,500 | m2              | 4          | 16,560          | 5          | 21,195          |
|               | Footpaths and paved areas                    | 68    | m2              | 64         | 4,296           | 72         | 4,857           |
| Canopy &      | Canopy & Veranda                             | 120   | m2              | 762        | 91,420          | 863        | 103,500         |
| Veranda       | Concrete Paths                               | 0     | m2              | -          | -               | -          | -               |
|               | Lighting                                     | 0     | m2              | -          | -               | -          | -               |
|               | Gates/entrances                              | 0     | m2              | -          | -               | -          | -               |
|               | Other-Miscellaneous                          | 0     | m2              | -          | -               | -          | -               |
|               | Stormwater                                   | 1     | %               | 3          | 165,437         | 3          | 170,035         |
|               | Sewer                                        | 1     | %               | 2          | 101,769         | 2          | 104,597         |
|               | Water                                        | 1     | %               | 2          | 99,262          | 2          | 102,021         |
|               | Gas                                          | 1     | %               | 1          | 44,116          | 1          | 45,343          |
|               | Fire Protection                              | 1     | %               | 1          | 33,087          | 1          | 34,007          |
|               | Light & Power                                | 1     | %               | 2          | 119,315         | 2          | 122,631         |
|               | Communication                                | 1     | %               | 1          | 25,066          | 1          | 25,763          |
| Miscellaneous | Sub-standard site conditions                 | 0     | % of<br>area    | -          | -               | -          | -               |

| Group | Sub Item                              | Qty | Unit | Rate (P50) | Amount<br>(P50) | Rate (P90) | Amount<br>(P90) |
|-------|---------------------------------------|-----|------|------------|-----------------|------------|-----------------|
|       |                                       |     |      | \$2019     | \$2019          | \$2019     | \$2019          |
|       |                                       |     |      |            |                 |            |                 |
|       |                                       |     |      |            |                 |            |                 |
|       | Council Fees                          | 1   | %    | 3          | 162,930         | 3          | 167,459         |
|       | Authority Fees                        | 1   | %    | 1          | 50,132          | 1          | 51,526          |
|       | Traffic Management                    | 1   | %    | 2          | 100,265         | 2          | 103,052         |
|       | Environmental<br>Management           | 1   | %    | 1          | 25,066          | 1          | 25,763          |
|       | Survey/Design                         | 1   | %    | 5          | 250,662         | 5          | 257,629         |
|       | Supervision & Project<br>Management   | 1   | %    | 9          | 451,191         | 9          | 463,733         |
|       | Site Establishment                    | 1   | %    | 3          | 125,331         | 3          | 128,815         |
|       | Environmentally<br>Sustainable Design | 1   | %    | 2          | 100,265         | 2          | 103,052         |
|       | Contingency                           | 1   | %    | 15         | 751,986         | 15         | 772,888         |
| Total | Excluding Delivery                    |     |      |            | 5,013,239       |            | 5,152,583       |
|       | Including Delivery                    |     |      |            | 7,619,120       |            | 7,830,896       |

Source: VPA Benchmark Infrastructure & Cost Guide – Appendix 3

| Group       | Sub Item                                     | Qty    | Unit | Rate (P50) | Amount<br>(P50) | Rate (P90) | Amount<br>(P90) |
|-------------|----------------------------------------------|--------|------|------------|-----------------|------------|-----------------|
|             |                                              |        |      | \$2019     | \$2019          | \$2019     | \$2019          |
| Buildings   | Site Preparation                             | 3,000  | m2   | 4          | 11,040          | 5          | 15,540          |
|             | Change Rooms With<br>Toilets and Showers X 6 | 687    | m2   | 2,408      | 1,654,385       | 2,445      | 1,679,89<br>5   |
|             | Umpire Change Rooms with Toilets             | 172    | m2   | 2,519      | 432,694         | 2,595      | 445,677         |
|             | Storage Rooms                                | 344    | m2   | 2,414      | 829,288         | 2,406      | 826,526         |
|             | Multipurpose Room/<br>Social Room            | 429    | m2   | 2,365      | 1,015,690       | 2,330      | 1,000,51<br>6   |
|             | Office/ First Aid Room                       | 86     | m2   | 2,352      | 201,952         | 2,360      | 202,696         |
|             | Canteen and Kitchen                          | 115    | m2   | 2,515      | 287,963         | 2,525      | 289,108         |
|             | Public Toilet                                | 172    | m2   | 1,239      | 212,742         | 1,586      | 272,375         |
|             | Netball Court                                | 1      | No   | 83,143     | 83,143          | 98,076     | 98,076          |
|             | Tennis Court                                 | 1      | No   | 65,423     | 65,423          | 72,602     | 72,602          |
|             | Lighting Netball Court                       | 1      | No   | 22,803     | 22,803          | 24,396     | 24,396          |
|             | Lighting Tennis                              | 1      | No   | 21,416     | 21,416          | 24,493     | 24,493          |
| Landscaping | Landscaping<br>Construction                  | 2753.4 | m2   | 20         | 55,839          | 26         | 72,112          |
|             | Landscaping<br>Establishment (12wk)          | 2753.4 | m2   | 1          | 3,084           | 1          | 3,552           |

# C.12 Sport and Recreation hub, 0.6-hectare site area

| Group         | Sub Item                                     | Qty    | Unit            | Rate (P50) | Amount<br>(P50) | Rate (P90) | Amount<br>(P90) |
|---------------|----------------------------------------------|--------|-----------------|------------|-----------------|------------|-----------------|
|               |                                              |        |                 | \$2019     | \$2019          | \$2019     | \$2019          |
|               | Landscape<br>maintenance-1 year/2<br>summers | 2753.4 | m2              | 3          | 7,985           | 3          | 8,095           |
| Car Parking   | Pavement                                     | 328.8  | m2              | 95         | 31,147          | 109        | 35,918          |
|               | Kerb and Channel                             | 52.8   | m               | 55         | 2,906           | 60         | 3,174           |
|               | Drainage Pipes                               | 60     | m               | 177        | 10,649          | 193        | 11,551          |
|               | Drainage Pits                                | 2.64   | No              | 2,612      | 6,896           | 2,803      | 7,399           |
|               | Car Park Lighting                            | 308.64 | m2              | 15         | 4,670           | 17         | 5,343           |
|               | Linemarking/ Signage                         | 328.8  | m2/pav<br>ement | 3          | 1,072           | 4          | 1,338           |
| Site Works    | Site Preparation                             | 6000   | m2              | 4          | 22,080          | 5          | 28,260          |
|               | Footpaths and paved areas                    | 90     | m2              | 64         | 5,729           | 72         | 6,476           |
| Canopy &      | Canopy & Veranda                             | 120    | m2              | 762        | 91,420          | 863        | 103,500         |
| veranda       | Concrete Paths                               | 0      | m2              | -          | -               | -          | -               |
|               | Lighting                                     | 0      | m2              | -          | -               | -          | -               |
|               | Gates/entrances                              | 0      | m2              | -          | -               | -          | -               |
|               | Other-Miscellaneous                          | 0      | m2              | -          | -               | -          | -               |
|               | Stormwater                                   | 1      | %               | 3          | 167,707         | 3          | 172,874         |
|               | Sewer                                        | 1      | %               | 2          | 103,165         | 2          | 106,344         |
|               | Water                                        | 1      | %               | 2          | 100,624         | 2          | 103,725         |
|               | Gas                                          | 1      | %               | 1          | 44,722          | 1          | 46,100          |
|               | Fire Protection                              | 1      | %               | 1          | 33,541          | 1          | 34,575          |
|               | Light & Power                                | 1      | %               | 2          | 120,952         | 2          | 124,679         |
|               | Communication                                | 1      | %               | 1          | 25,410          | 1          | 26,193          |
| Miscellaneous | Sub-standard site conditions                 | 0      | % of<br>area    | -          | -               | -          | -               |
|               | Council Fees                                 | 1      | %               | 3          | 165,166         | 3          | 170,255         |
|               | Authority Fees                               | 1      | %               | 1          | 50,820          | 1          | 52,386          |
|               | Traffic Management                           | 1      | %               | 2          | 101,640         | 2          | 104,772         |
|               | Environmental<br>Management                  | 1      | %               | 1          | 25,410          | 1          | 26,193          |
|               | Survey/Design                                | 1      | %               | 5          | 254,101         | 5          | 261,931         |
|               | Supervision & Project<br>Management          | 1      | %               | 9          | 457,381         | 9          | 471,476         |
|               | Site Establishment                           | 1      | %               | 3          | 127,050         | 3          | 130,965         |
|               | Environmentally<br>Sustainable Design        | 1      | %               | 2          | 101,640         | 2          | 104,772         |
|               | Contingency                                  | 1      | %               | 15         | 762,302         | 15         | 785,793         |
| Total         | Excluding Delivery                           |        |                 |            | 5,082,016       |            | 5,238,61<br>8   |

| Group | Sub Item           | Qty | Unit | Rate (P50) | Amount<br>(P50) | Rate (P90) | Amount<br>(P90) |
|-------|--------------------|-----|------|------------|-----------------|------------|-----------------|
|       |                    |     |      | \$2019     | \$2019          | \$2019     | \$2019          |
|       | Including Delivery |     |      |            | 7,723,647       |            | 7,961,65<br>2   |

Source: VPA Benchmark Infrastructure & Cost Guide - Appendix 3.

# C.13 Art and Cultural hub, 0.24-hectare site area

| Group        | Sub Item                                 | Qty   | Unit | Rate<br>(P50) | Amount<br>(P50) | Rate<br>(P90) | Amount<br>(P90) |
|--------------|------------------------------------------|-------|------|---------------|-----------------|---------------|-----------------|
|              |                                          |       |      | \$2019        | \$2019          | \$2019        | \$2019          |
| Buildings    | Library                                  | 1,500 | m2   | 2,302         | 3,452,955       | 2,441         | 3,661,350       |
|              | Small commercial<br>Kitchen              | 45    | m2   | 2,855         | 128,462         | 3,109         | 139,910         |
|              | Consulting Suite                         | 200   | m2   | 2,464         | 492,806         | 2,568         | 513,528         |
|              | Multipurpose<br>community Spaces         | 450   | m2   | 2,302         | 1,035,887       | 2,441         | 1,098,405       |
|              | Storage External                         | -     | m2   | 1,830         | -               | 2,040         | -               |
|              | Specialist Community<br>Space            | 250   | m2   | 2,302         | 575,493         | 2,441         | 610,225         |
|              | Disabled toilet/<br>Parent's Change room | -     | m2   | 3,040         | -               | 3,462         | -               |
|              | Toilets/ Change Rooms                    | -     | m2   | 2,853         | -               | 3,109         | -               |
|              | Administration                           | -     | m2   | 2,245         | -               | 2,290         | -               |
|              | Cleaners                                 | -     | m2   | 2,149         | -               | 2,325         | -               |
| Canopy &     | Canopy & Veranda                         | -     | m2   | 1,106         | -               | 1,299         | -               |
| Veranda      | Pavement                                 | 3,327 | m2   | 97            | 323,218         | 106           | 352,329         |
| Car park     | Kerb and Channel                         | 473   | m    | 55            | 25,925          | 62            | 29,350          |
|              | Drainage Pipes                           | 282   | m    | 180           | 50,718          | 201           | 56,786          |
|              | Drainage Pits                            | 10    | Item | 2,565         | 25,654          | 2,851         | 28,515          |
|              | Linemarking/Signage                      | 3,327 | Item | 3             | 10,347          | 4             | 14,206          |
|              | Car Park Lighting                        | 3,456 | m2   | 15            | 52,116          | 18            | 63,418          |
|              | Other                                    | -     |      | -             | -               | -             | -               |
| Outdoor Play | Kindergarten outdoor<br>playspaces       | -     | m2   | 530           | -               | 610           | -               |
|              | Playground                               | -     | m3   | 794           | -               | 1,131         | -               |
| Site works   | Site Preparation                         | 8,777 | m2   | 4             | 32,299          | 5             | 45,640          |
|              | Paths                                    | 180   | m2   | 68            | 12,175          | 81            | 14,625          |
|              | Landscaping                              | 500   | m2   | 26            | 13,090          | 30            | 14,905          |
|              | Lighting                                 | -     | Item | -             | -               | -             | -               |
|              | Boundary Fencing                         | -     | m    | 89            | -               | 116           | -               |
|              | Gates                                    | 1     | Item | 615           | 615             | 707           | 707             |
|              | Other                                    | -     |      | -             | -               | -             | -               |
| Services     | Stormwater                               | 1     | %    | 3             | 205,648         | 3             | 219,249         |

| Group         | Sub Item                              | Qty | Unit         | Rate<br>(P50) | Amount<br>(P50) | Rate<br>(P90) | Amount<br>(P90) |
|---------------|---------------------------------------|-----|--------------|---------------|-----------------|---------------|-----------------|
|               |                                       |     |              | \$2019        | \$2019          | \$2019        | \$2019          |
|               | Sewer                                 | 1   | %            | 2             | 126,505         | 2             | 134,871         |
|               | Water                                 | 1   | %            | 2             | 123,389         | 2             | 131,549         |
|               | Gas                                   | 1   | %            | 1             | 54,839          | 1             | 58,466          |
|               | Fire Protection                       | 1   | %            | 1             | 41,130          | 1             | 43,850          |
|               | Light & Power                         | 1   | %            | 2             | 148,316         | 2             | 158,125         |
|               | Communication                         | 1   | %            | 1             | 31,159          | 1             | 33,219          |
| Miscellaneous | Sub-standard site conditions          | -   | % of<br>area | -             | -               | -             | -               |
|               | Council Fees                          | 1   | %            | 3             | 202,532         | 3             | 215,927         |
|               | Authority Fees                        | 1   | %            | 1             | 62,318          | 1             | 66,439          |
|               | Traffic Management                    | 1   | %            | 2             | 124,635         | 2             | 132,878         |
|               | Environmental<br>Management           | 1   | %            | 1             | 31,159          | 1             | 33,219          |
|               | Survey/ Design Fees                   | 1   | %            | 5             | 311,588         | 5             | 332,195         |
|               | Supervision and Project<br>Management | 1   | %            | 9             | 560,858         | 9             | 597,951         |
|               | Site Establishment                    | 1   | %            | 3             | 155,794         | 3             | 166,097         |
|               | Environmentally<br>Sustainable Design | 1   | %            | 2             | 124,635         | 2             | 132,878         |
|               | Contingency                           | 1   | %            | 15            | 934,764         | 15            | 996,585         |
| Total         | Excluding Delivery                    |     |              |               | 6,231,759       |               | 6,643,899       |
|               | Including Delivery                    |     |              |               | 9,471,028       |               | 10,097,398      |

Source: VPA Benchmark Infrastructure & Cost Guide - Appendix 3

# D Education

- Please note that this analysis of education costs in Victoria is intended as a high-level overview. The assumptions made in this study are broad to facilitate a simplified model of infrastructure responses and their associated costs. Real-world assessments are likely to differ significantly, considering various complex inputs and decisions. It is important to acknowledge that the Department of Education may have alternative methods of addressing growth that have not been considered in this analysis. Therefore, the findings presented here may not necessarily reflect the planning approach of the Department of Education.
- Need for additional education infrastructure is estimated for kindergarten, primary and secondary schools based on modelled existing capacity and a range of priority responses to meet additional enrolments until 2036 and 2056.
  - School and kindergarten infrastructure is modelled to support total Victorian school enrolments; however, the response is based on students being housed in infrastructure developed to government standards. Based on the current ratio of government to non-government school enrolments a cost to government for total infrastructure provision has also been identified.
  - The Victorian Government has committed to free Kindergarten programs for all Victorian three- and four-year-old children, which will lead to an increase in demand for new facilities, and
  - Primary and secondary schools can meet additional enrolments by utilising their existing permanent and relocatable capacity (within an adopted provision), and beyond that new schools are required.
- To meet additional kindergarten enrolments between 2021 and 2056:
  - 832 new kindergarten facilities are needed across the state due to the new policy reform and the anticipated growth. This assumes that 57 per cent of the anticipated growth will be accommodated in new kindergartens, and the remainder in centre-based day care facilities. If all enrolment growth were to be supported in kindergartens 1 460 new kindergarten would be required.
- To meet additional primary school enrolments between 2021 and 2056:
  - Under our model, primary schools can accommodate between 40 to 54 percent of the additional enrolments until 2056 in existing permanent and relocatable buildings with surplus capacity on-site. This share is the highest for the Distributed State scenario and the lowest for the Dispersed City scenario, which experiences the largest growth in the Melbourne New Growth Areas across all scenarios, an area with a relatively low share of existing permanent capacity.

- Existing relocatable capacity is very high across all regions and exceeds our modelled limit (40 per cent of permanent capacity) in some regions, such as the Melbourne New Growth Areas. As a result, no new relocatable buildings are being provided to accommodate enrolment in our model.
- Across scenarios new permanent buildings on exiting school sites are constructed to accommodate 68,150 (Dispersed City scenario) to 84,101 (Distributed State scenario) enrolments:
  - Those include 46,570 or 8.3 per cent of existing enrolments which are moved from existing relocatable buildings to new permanent buildings, and 21,580 (Dispersed City scenario) to 37,531 of additional enrolments (Distributed State scenario).
- Beyond this, 133 to 172 new governmental primary schools and 194 to 257 total new primary schools are needed to meet the additional enrolments across scenarios.
- **To meet additional secondary school enrolments between 2021 and 2056:** 
  - Under our model, secondary schools can accommodate between 57 to 62
    percent of the additional enrolments until 2056 in existing permanent and
    relocatable buildings with surplus capacity on-site. This share is the highest for
    the Distributed State scenario and the lowest for the Dispersed City scenario,
    which experiences the largest growth in the Melbourne New Growth Areas
    across all scenarios, an area with a relatively low share of existing permanent
    capacity.
  - Existing relocatable capacity is high across all regions and exceeds our modelled limit (40 per cent of permanent capacity) in some regions, such as the Melbourne New Growth Areas. As a result, only a small share of 4,405 to 6,781 of additional enrolments are accommodated in relocatable buildings.
  - Across scenarios new permanent buildings on exiting school sites are constructed to accommodate 44,156 (Dispersed City scenario) to 51,674 (Distributed State scenario):
    - ... Those include 10,589 or 2.5 per cent of existing enrolments which are moved from existing relocatable buildings to new permanent buildings, and 33,567 to 41,085 of additional enrolments.
  - Beyond this, 18 to 24 new governmental secondary schools and 33 (Distributed State scenario) to 47 (Dispersed City scenario) total new secondary schools are needed to meet the additional enrolments across scenarios.
- Total capital and infrastructure operating cost of providing additional school infrastructure ranges from \$26.2 (Distributed State scenario) to \$35.3 billion (Compact City scenario) for government schools and kindergarten infrastructure, and \$37.0 to \$55.3 billion for the total Victorian school infrastructure including non-government schools and centre-based day care facilities.
  - Scenarios which see more additional enrolments in Metropolitan Melbourne have substantially higher costs in terms of capital and land cost. In particular growth in Inner Melbourne and Melbourne New Growth Areas is often met with

new schools rather than additional relocatable or additional permanent capacity, adding land cost.

- In all scenarios, the cost of total additional primary school infrastructure is almost double the cost of total additional secondary school infrastructure. This is driven by two factors; new primary schools are somewhat more expensive per student than new secondary schools and relatively more additional enrolments in secondary schools can be accommodated on existing school sites.
- The Capital and land cost account for the majority of cost with approximately 70 per cent (Distributed State scenario) to 75 per cent (Compact City scenario).



#### D.1 Total school infrastructure cost until 2056

Data source: CIE.



#### D.2 Total capital cost until 2056

Note: Includes land cost Data source: CIE.

# Education Provision in Victoria

In Victoria, education is compulsory for children aged from 6 to 17 years.<sup>91</sup> The education system consists of three main stages:<sup>92</sup>

- Kindergarten/preschool
- Primary school and secondary high school
- Tertiary education.

# Kindergarten / Preschool

Kindergarten/preschool education in Victoria covers preschools, kindergartens, or preschool programs in long day care centres. It is typically a one-to-two-year program for children before they start primary school. While not mandatory in Victoria, it is advised that children participate in kindergarten/preschool education to foster their social, mental, and physical skills in readiness for school.<sup>93</sup>

Preschool is offered in designated preschools, as preschool programs within centre-based day care, or in preschools collocated with primary schools for 3- and 4-year-old children across the state. The provision of kindergarten/preschool education in Victoria is available through both government and non-government entities:<sup>94</sup>

- **Government** provision is around 14 per cent.
- Non-government provision accounts for 86 per cent, while the majority of those were community preschools, followed by independent preschools.
- Governmental and non-governmental provision rates vary only somewhat by region, with governmental providers accounting for 12 per cent in Major Cities and ~17 per cent in inner and outer regional areas, while remote and very remote areas are only serviced by non-governmental providers.
- In 2022, 43 per cent of enrolled children visited a preschool program delivered by centre-based day care services.<sup>95</sup>

The Victorian Government has committed to expand kindergarten programs across the state. This entails:<sup>96</sup>

93 https://liveinmelbourne.vic.gov.au/live/education-and-childcare/melbournes-educationsystem

95 ABS Preschool Education, Australia, 2022, Graph 2, Children enrolled by sector, https://www.abs.gov.au/statistics/people/education/preschool-education/latestrelease#enrolments-by-sector

<sup>91</sup> https://www.study.vic.gov.au/en/study-in-victoria/victoria's-schoolsystem/Pages/default.aspx

<sup>92</sup> https://liveinmelbourne.vic.gov.au/live/education-and-childcare/melbournes-educationsystem

<sup>94</sup> ABS Preschool Education, Australia, 2021, Table 2 and Table 9 Children enrolled, https://www.abs.gov.au/statistics/people/education/preschool-education-australia/latestrelease

<sup>96</sup> https://www.vic.gov.au/give-your-child-the-best-start-in-life

- Free Kindergarten programs for all Victorian three- and four-year-old children at participating services in both standalone (sessional) services and long day care (childcare) settings,
- Over the next decade, Four-Year-Old Kindergarten will transition to 'Pre-Prep' increasing to a universal 30-hour a week program of play-based learning for every four-year-old child in Victoria.

# Primary and Secondary Schools

Primary school students are aged between 5 and 12 years old with classes divided into Prep and Years 1 to 6. Secondary school students are aged between 12 and 20 years old, while classes are divided into Years 7 to 12.97

The Victorian primary and secondary school system has 3 main providers (chart D.3):98

- Government schools provision ranges around 68 per cent in primary and 57 per cent in secondary schools and for all schools at ~64 per cent and dominates special and language schools.
- Catholic schools account overall for 21 per cent and
- **Independent schools** for 16 per cent of all students.

In addition, the number of children registered for home schooling is continuing to grow in recent years, however, makes up less than  $\sim 1$  per cent of all children.<sup>99</sup>



D.3 Victorian education system, by school type and provider (2022)

Note: Primary includes preparatory, year 1 to 6 and ungraded students. Secondary includes year 7 to 12 and ungraded students. Data as of February 2021.

Data source: Table 1 Summary Statistics on Victorian Schools, available here: https://www.vic.gov.au/statistics-victorian-schools-and-teaching

97 https://www.study.vic.gov.au/en/study-in-victoria/victoria's-schoolsystem/Pages/default.aspx

- 98 Victorian Government (2022), Statistics on Victorian schools and teaching, Schools and enrolments 2022.xlsx, available at: https://www.vic.gov.au/statistics-victorian-schools-and-teaching
- 99 https://www.vrqa.vic.gov.au/aboutus/Pages/homeschoolingstatistics2020.aspx

The share of government school provision for primary, secondary and language schools has been constant in the past 10 years, while the role of non-governmental special schools has been increasing over the past years (chart D.4).

Government versus non-government provision varies only slightly by the administration regions. Government provision tends to be higher in areas with low enrolments, such as regional areas (chart D.5).



D.4 Share of governmental provision by school type, 2013 to 2022

Note: Primary includes preparatory, year 1 to 6 and ungraded students. Secondary includes year 7 to 12 and ungraded students. Data as of February 2021.

Data source: Schools and enrolments 2022, available here: https://www.vic.gov.au/statistics-victorian-schools-and-teaching and enrolments 2022, available here: https://www.vic.gov.au/statistics-victorian-schools-and-teaching'



#### D.5 Governmental provision by LGA enrolment size

Note: Both primary and secondary. Red dashed line shows the overall Victorian Government share. Data source: Schools and enrolments 2022, available here: https://www.vic.gov.au/statistics-victorian-schools-and-teaching

## **Tertiary Education**

Victoria's post-secondary education system comprises 10 universities, a network of vocational training institutions called TAFEs, and numerous private colleges and training institutes that provide a broad selection of career skills and qualifications, as well as English language, executive, and professional development programs.

This analysis has excluded the tertiary education sector as it serves larger catchments, thereby, resulting in minor variations in additional provision and cost across the different population scenarios.

# Summary of assumptions

For the purpose of this analysis, we have made a suite of general modelling assumptions summarised in table D.6, that enable us to calculate infrastructure provision and cost to meet the objectives of this project. Broad assumptions have been made to support a simplified model of infrastructure responses and associated costs and that real world assessments would likely be quite different considering multiple complex inputs and decisions.

We recognise the actual situation may vary across the state and might not be fully represented in our assumption. For example, the Victorian Government has announced a major funding initiative to increase attendance and quality provision of preschools/kindergartens across the state as part of their Early Childhood Reform Plan.<sup>100</sup>

Some of the key assumptions include:

- Additional kindergarten enrolment space for every four-year old and every two threeyear old is required in line with the 2033 goal.<sup>101</sup>
  - This is based on 3-year-olds attending for 15 hours, and 4-year-olds attending for 30 hours. This allows for the possibility of holding two sessions a day for 3-yearolds. Consequently, only one kindergarten space is required for every two threeyear-olds, while one space is needed for every 4-year-old.

As this policy intervention will lead to a surge in demand, we have assumed that there is no existing building capacity and any additional enrolments moving forward are met with new kindergarten funded by the Victorian Government and not for profit and private providers. Facilities funded by government are assumed to be co-located with primary schools or multi-purpose community facilities requiring no extra land<sup>102</sup>, except for some areas in Inner Melbourne where there is no land available to co-locate new kindergartens.

- The assumptions made are quite conservative, considering that currently, approximately 43 percent of all enrolled children are attending a preschool

<sup>100</sup> Victorian Government (2017), *Early Childhood Reform Plan,* https://www.education.vic.gov.au/Documents/about/educationstate/ec-reform-plan.pdf

<sup>101</sup> https://www.vic.gov.au/give-your-child-the-best-start-in-life

<sup>102</sup> https://www.schoolbuildings.vic.gov.au/building-blocks-grants-capacity-building

program delivered by centre-based day care services, and there might still be available capacity in the system. As a result, we have incorporated sensitivities to explore scenarios with a lower share of governmental provision (only 57 percent) and to test the impact of existing capacities.

- Special and language schools, and home-schooling are not modelled separately due their small overall share.
- School infrastructure is modelled to support total Victorian school enrolments; however, the response is based on students being housed in infrastructure developed to government standards. Based on the current ratio of government to nongovernment school enrolments a cost to government for infrastructure provision has also been identified.
- Note that the analysis presented in this report covers the period from 2021 to 2056; however, it is important to clarify that schools funded in 2021 will not be operational until 2023. Therefore, to ensure consistency and accuracy in calculating infrastructure provision and costs over the entire time frame, we have adopted the 2023 enrolment figures as the baseline figure from which to project infrastructure needs and expenses from 2021 to 2056. This approach accounts for the delay in school openings and ensures that the projections are aligned to the actual operational timeline of the funded schools.

| Metric                                        | To be included in model                                                                                                                              |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of school                                |                                                                                                                                                      |
| Kindergarten/Preschool                        | Yes, separate demand modelling and no excess capacity assumed.                                                                                       |
| Primary/                                      | Yes                                                                                                                                                  |
| Secondary Schools                             | Yes                                                                                                                                                  |
| Special Schools                               | No, demand will be allocated to primary and secondary schools due to small quantity (<5 per cent of all schools and <2 per cent of all students)     |
| Language Schools                              | No, demand will be allocated to primary and secondary schools due to small quantity (<0.2 per cent of all schools and <0.2 per cent of all students) |
| Home Schooling                                | No, demand will be allocated to primary and secondary schools due to small quantity (<1 per cent of all students)                                    |
| TAFE                                          | No, as they serve large catchments and unlikely to have large cost differential across scenarios.                                                    |
| University                                    | No, as they serve large catchments and unlikely to have large cost differential across scenarios.                                                    |
| Providers                                     |                                                                                                                                                      |
| Government Schools and Preschool/Kindergarten | Yes.<br>To be consistent with other infrastructure sectors, we model government and non-                                                             |
| Catholic/Independent/Com                      | government provision together, ie taking a resource cost approach, recognising that non-government schools receive gap funding.                      |
| Preschool/Kindergarten                        | This means that we assume that all increased school enrolments are supported in new schools built to the standard and cost of government schools.    |
|                                               | Also, we assume that existing non-government schools have the same surplus<br>capacity as government schools.                                        |

#### D.6 General Assumptions

| 1 | 0 | 0 |  |
|---|---|---|--|
| L | o | 2 |  |

| Metric | To be included in model                                                                                                                                                                                       |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Kindergarten facilities are assumed to be fully funded by the Victorian Government through directly funding them on school or community sites, or allocating grants to local government, or private entities. |

Source: CIE.

# Approach to measure additional school infrastructure provision

Broad assumptions have been made to support a simplified model of infrastructure responses and associated costs and that real world assessments would likely be quite different considering multiple complex inputs and decisions. Our high-level approach to estimate additional school infrastructure provision needed follows a three-step process:

- 1 Calculate additional enrolments for preschools/kindergarten, primary and secondary schools for each region (SA3) by 2036 and 2056
- 2 Calculate the current school capacity in terms of existing capacity in permanent buildings (i.e., bricks and mortar) and in relocatable buildings (i.e., portables)
  - a) For primary and secondary schools existing relocatable capacity has been capped. This means that existing enrolments are moved from existing relocatable buildings into new permanent buildings on the same school site, where the share of students based in relocatable buildings is higher than 40 per cent of total enrolments. This assumption is tested in the sensitivity analysis.
  - b) For preschools/kindergarten we have been assumed that there is no existing capacity. We have also reported results assuming a 25 per cent capacity.
- 3 Calculate additional education infrastructure to accommodate additional enrolments.
  - a) This based on iterative process of increasing capacity at existing school sites with *adopted*<sup>103</sup> additional relocatable and additional permanent capacity.<sup>104</sup>
  - b) Once existing school site have no expansion capacity within the *adopted* provision, new schools are required.

IV's population projection is provided on a regional level (SA3) and by age groups 0-14 and 15-24.<sup>105</sup> These are redistributed into the age groups relevant for education infrastructure (i.e., 3 to 4, 5 to 11 and 12- to 17-year-old). The redistribution is based on

105 Developed by SGS.

<sup>103 &#</sup>x27;adopted' relates to response assumptions which have been developed as part of the consultation of Infrastructure Victoria with the Department of Education and do not reflect state government policy. For example, existing schools might already have a higher existing relocatable capacity than indicated by the response assumptions. For areas outside of Inner Melbourne adopted relocatable capacity is assumed as 20 per cent of the total permanent capacity.

<sup>&</sup>lt;sup>104</sup> In consultation with the Department of Education, Infrastructure Victoria has provided a methodology to calculate the recommended responses to additional enrolments.

the VIF (2019) population projection distribution of ages for major regions (Greater Melbourne GCCSA and regional SA4s).<sup>106</sup>

Based on this, children are allocated to the respective school types as shown in table D.7. There are some overlaps between some ages and the school type:

- 48 per cent of 5-year-old children are enrolled in preschools/kindergarten while the remainder is enrolled in the preparatory year of primary schools,
- 46 per cent of 12-year-old children are enrolled in primary schools while the remainder are enrolled in secondary schools.
- Note that we have used actual enrolments for kindergarten in 2023. The enrolment shares are currently lower than the one shown in the table below. With the kindergarten policy reform, a higher share of children is expected to need enrolment spaces compared to today. This means that additional capacities are also needed for children who are currently not enrolled.

| Age | Type of education | Comment                       | Share of children |
|-----|-------------------|-------------------------------|-------------------|
|     |                   |                               | Per cent          |
| 3   | Kindergarten      |                               | 50                |
| 4   | Kindergarten      |                               | 100               |
| 5   | Kindergarten      | Split share due to transition | 48                |
| 5   | Primary           | Split share due to transition | 52                |
| 6   | Primary           |                               | 100               |
| 7   | Primary           |                               | 100               |
| 8   | Primary           |                               | 100               |
| 9   | Primary           |                               | 100               |
| 10  | Primary           |                               | 100               |
| 11  | Primary           |                               | 100               |
| 12  | Primary           | Split share due to transition | 46                |
| 12  | Secondary         | Split share due to transition | 54                |
| 13  | Secondary         |                               | 100               |
| 14  | Secondary         |                               | 100               |
| 15  | Secondary         |                               | 100               |
| 16  | Secondary         |                               | 100               |
| 17  | Secondary         |                               | 100               |
| 18  | Secondary         |                               | 53                |

#### D.7 School type by age and share of enrolment

106 Victoria in Future (2019), Official state government projection of population and households, available at: https://www.planning.vic.gov.au/land-use-and-populationresearch/victoria-infuture#:~:text=Victoria%20in%20Future%202019&text=VIF2019%20shows%20Victoria%20r

emains%20the,Total%20population

<sup>a</sup> Kindergarten offered to 3- and 4-year-old children is not mandatory. Data on enrolled children is take from the ABS Census for education. Participation rates of enrolled preschool/kindergarten students across Victorian LGA's are high but vary between 72 and 100 per cent, while the Victorian average lies at ~92 per cent in 2019.<sup>107</sup>

Note: Whilst students may attend up until the age of 20 (as you have noted earlier), there are not significant enrolments for students over 18 years of age.

Source: ABS Education data.

In consultation with the Victorian Department of Education and Infrastructure Victoria we have developed a methodology to calculate existing capacity and priority responses for additional enrolments (table D.8). Flow chart (D.9) shows the allocation process of additional enrolments beyond existing capacity:

Additional enrolment is first absorbed by existing surplus capacity at a school. If possible, additional relocatable buildings are used to meet the additional enrolments. This, however, is not possible in every region (e.g., Inner Melbourne). After that, if ongoing demand is maintained and it is a practical solution, additional permanent capacity is added. Note that some of the existing enrolment is moved from relocatables into new permanent buildings (within the adopted provision) where the share of students based in relocatable buildings is higher than 40 per cent of total permanent capacity.

After this allocation process, if the ongoing demand is maintained and exceeds those measures, new schools are required.

For kindergarten any additional demand is assumed to be met by constructing new designated facilities which will be co-located with primary schools or multi-purpose community facilities. Based on those priority responses additional school infrastructure demand is compared to the additional enrolments by school type and region (SA3).

|                                   | Priority Responses (left to right                                                           |                                                                                                                                                                                               |                                                |                                                   |                                           |  |
|-----------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------------------|--|
| Geographic<br>Setting             | Absorb existing<br>surplus                                                                  | Additional<br>relocatable<br>buildings                                                                                                                                                        | Additional<br>permanent<br>buildings           | New primary<br>school                             | New secondary<br>school                   |  |
| Inner (high density)<br>Melbourne |                                                                                             | N                                                                                                                                                                                             | No                                             |                                                   |                                           |  |
| Inner (other)<br>Melbourne        | Yes –<br>excess existing<br>permanent capacity<br>+ excess existing<br>relocatable capacity | Yes -<br>up to 25% of<br>existing Yes - Yes -<br>g Yes - capacity for up to 525 for up to 1200<br>enrolments <sup>a</sup> enrolments <sup>a</sup><br>permanent Yes -<br>capacity up to 50% of | Yes -                                          |                                                   |                                           |  |
| Middle and Outer<br>Melbourne     |                                                                                             |                                                                                                                                                                                               | up to 25% of<br>existing<br>permanent          | Yes –<br>for up to 525<br>enrolments <sup>a</sup> | Yes -                                     |  |
| Melbourne New<br>Growth Areas     |                                                                                             |                                                                                                                                                                                               | capacity for up to 525 enrolments <sup>a</sup> |                                                   | for up to 1200<br>enrolments <sup>a</sup> |  |
| Regional (cities and major towns) | (up to 40%)                                                                                 |                                                                                                                                                                                               |                                                |                                                   |                                           |  |
| Regional (other)                  |                                                                                             | . ,                                                                                                                                                                                           | existing<br>permanent<br>capacity              |                                                   |                                           |  |

#### D.8 Priority responses for additional primary and secondary school enrolments

<sup>a</sup> New school capacity is a mix of permanent and relocatable and can be adjusted to local requirements.

# 107 Department of Education, VCAMS Kindergarten participation rate

https://discover.data.vic.gov.au/dataset/vcams-kindergarten-participation-rate

Source: CIE in consultation with Infrastructure Victoria and Department of Education



#### D.9 Flow chart of additional enrolment allocation beyond existing capacity

Data source: CIE.

# Excess Capacity in Victoria's school infrastructure

Data on primary and secondary enrolments and existing government school capacity by region (SA3) for February 2023 have been provided by Infrastructure Victoria based on consultations with the Department of Education. At a high level (aggregated by region) the data indicates, when considered at an SA3 level, with the modelling assumptions adopted that (chart D.10 and D.11):

- Primary and secondary schools in Regional Victoria have some existing permanent surplus capacity, while Inner, Middle and Outer Melbourne and Melbourne New Growth Areas have no surplus permanent capacity and manage current enrolments with relocatable capacity.
  - Middle and Outer Melbourne and Melbourne New Growth Areas have also some existing relocatable capacities above the adopted provision.
- In addition, primary schools in the Melbourne New Growth Areas use some of the relocatable capacity which is above the upper limit of 40 per cent provision to manage current enrolments. This means that going forward allowance will be made in the model for new additional permanent capacity to replace some of the existing relocatable capacity.
- Overall, the capacity for additional enrolments from existing permanent surplus and relocatable capacity within the adopted provision is:
  - approximately 81,000 enrolments or 21 per cent of current enrolments within the government primary school system and 78,000 enrolments or 32 per cent of current enrolments within the government secondary school system, or
  - approximately 128,000 enrolments within the total Victorian primary school system and 149,000 enrolments within the total Victorian secondary school system, respectively.<sup>108</sup>
- For kindergarten facilities we assume that there is no excess capacity at all due to the recent policy shift which will see a surge in demand. This assumption will be relaxed in the sensitivity analysis, assuming a 25 per cent existing capacity (~32,000 enrolments).

Note that we have aggregated the data, and this pattern does not hold for every region (SA3) within Victoria.

<sup>108</sup> This estimate is based on the calculated enrolment figures for the whole state and by the data from 2021 to 2023 and assuming that non-government schools have the same capacity (constraints) and responses to additional enrolments as government schools.





Source: CIE in consultation with Infrastructure Victoria and Department of Education



#### D.11 Government secondary school enrolments and capacity (2023)

Source: CIE in consultation with Infrastructure Victoria and Department of Education

# Additional provision by population scenario

Until 2056, we estimate that:

Total additional preschool/kindergarten enrolments are approximately 96,000.
 Directly funded governmental provision accounts for 12 per cent in 2023.<sup>109</sup> This

<sup>109</sup> This is based on the ABS Preschool Education (2022) data which split out preschool education by provider and remoteness area.

allocation may vary in the future with the current reforms in preschool education<sup>110</sup>, however for the purpose of this analysis we have assumed that all additional enrolment spaces will be funded by the Victorian Government but not necessarily operated.

- This assumption is quite conservative, considering that currently, approximately 43 percent of all enrolled children are attending a preschool program delivered by centre-based day care services. Applying this share to the estimated kindergarten enrolments indicates that approximately 41,000 additional enrolments will be accommodated in centre-based day care services.
- Total additional primary school enrolments are approximately 210,000 a 55 per cent increase compared to 2023. Government schools account for 65 to 66 per cent of enrolments varying by scenario. For example, when more population is allocated to regional areas the level of governmental provision will be higher since those areas are predominantly serviced by government schools.
- Total additional secondary school enrolments are approximately 176,000 almost double compared to 2023. Government schools account for 49 to 55 per cent, varying by scenario.

Chart D.12, D.13 and D.14 illustrate how these additional enrolments are distributed between the region in Victoria under each scenario.



#### D.12 Additional enrolment in the Victorian kindergarten system, 2023 to 2056

Note: CBDC - Centre-based day care

Data source: CIE Education Model based on consultation with Infrastructure Victoria and Department of Education, ABS Preschool Education, 2022.

110 Victorian Government (2017), Early Childhood Reform Plan,

https://www.education.vic.gov.au/Documents/about/educationstate/ec-reform-plan.pdf





Data source: CIE Education Model based on consultation with Infrastructure Victoria and Department of Education





Data source: CIE Education Model based on consultation with Infrastructure Victoria and Department of Education

## Priority response to additional enrolments

Additional enrolments until 2036 and 2056 are met with the priority responses developed in consultation with Infrastructure Victoria and Department of Education.

Table D.15 describes in detail the various indicators reported in the following result tables.

| Indicator                                                                                 | Description                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2023                                                                                      |                                                                                                                                                                                                                                                                                                                                  |
| Total enrolments (to date)                                                                | Total school enrolments in 2023 (Prep to Year 12).                                                                                                                                                                                                                                                                               |
| Existing permanent capacity                                                               | Existing school capacity in permanent buildings (i.e., bricks and mortar) of all school campuses.                                                                                                                                                                                                                                |
| Existing relocatable capacity                                                             | Existing school capacity in relocatable buildings (i.e., portables) of all school campuses where students based in relocatable buildings is lower or equal to 40 per cent of permanent capacity.                                                                                                                                 |
| Total existing capacity                                                                   | Sum of existing permanent and relocatable capacity.                                                                                                                                                                                                                                                                              |
| Excess capacity                                                                           | Total existing capacity less of total enrolments to date.                                                                                                                                                                                                                                                                        |
| Expansion capacity                                                                        | Additional relocatable buildings (up to 20% existing permanent capacity) + additional permanent capacity (25% or 50%).                                                                                                                                                                                                           |
| Total potential capacity<br>on existing school<br>campuses                                | Sum of excess capacity and expansion capacity.                                                                                                                                                                                                                                                                                   |
| 2023 to 2056                                                                              |                                                                                                                                                                                                                                                                                                                                  |
| Additional enrolments                                                                     | Additional enrolments that need to be accommodated by 2056 based on population<br>data. This figure matches the sum of:<br>'Additional enrolments met by excess capacity (within adopted provision)'<br>+ 'Additional enrolments in relocatable building (within adopted provision)'<br>+ 'Additional enrolments in new schools' |
| Additional enrolments met by excess capacity                                              | Number of additional enrolments that can be accommodated by the existing excess capacity.                                                                                                                                                                                                                                        |
| Additional enrolments in relocatable buildings                                            | Number of additional enrolments that can be accommodated by providing additional relocatable buildings on existing school sites. For the great majority of SA3 areas this is 0 as most SA3 areas have already a higher relocatable building provision than our adopted provision.                                                |
| Existing enrolments<br>moved from existing<br>relocatable into new<br>permanent buildings | Number of existing enrolments which are moved from existing relocatable buildings into new permanent buildings on the same school site, where the share of students based in relocatable buildings is higher than 40 per cent of total enrolments.                                                                               |
| Additional enrolments in new permanent buildings                                          | Number of additional enrolments which are accommodated in new permanent buildings on existing school sites.                                                                                                                                                                                                                      |
| Additional enrolments in new schools                                                      | Number of additional enrolments that cannot be accommodated in existing capacity, new relocatable or permanent buildings. Those enrolments require new schools.                                                                                                                                                                  |

#### D.15 Description of indicators for result tables

Note: Allocation of additional enrolments follows the <u>adopted</u> provision outlines in the previous sections. For new relocatable buildings this is up to 20 per cent of the existing permanent capacity and for new permanent buildings 0 up to 50 per cent of the existing permanent capacity.

Source: CIE.

Tables D.16 to D.21 summarise the adopted existing permanent and relocatable capacity that can be utilised in 2023 and the additional school infrastructure needed from 2023 to 2056 for only the governmental and total Victorian provision and for kindergarten, primary and secondary schools:

- Kindergarten facilities are assumed to have no excess capacity and future additional enrolments are met with new facilities. While the number of additional enrolments is the same, the number of facilities needed varies somewhat by scenario due to regional enrolment differences. For example, total enrolments are lower in one regional area in one scenario in 2056 compared to 2023.
  - To meet the additional enrolments created by new policy reform around 1 460 new kindergarten facilities are calculated to be needed across the state. Under current provision patterns this would require 628 additional centre-based day care centres, and 832 additional kindergartens.
  - The capacity assumption is quite conservative. Consequently, we have explored various capacity scenarios. For instance, assuming a 25 percent existing capacity across all regions, the required additional kindergarten facilities amount to 563 to 569.
- Primary schools have existing capacity; however, under the model use of this capacity is limited due to a mismatch of where additional enrolments occur and where capacity exists.
  - Primary schools can accommodate between 40 to 54 percent of the additional enrolments until 2056 on-site in existing buildings. This share is the highest for the Distributed State scenario, as Regional Victoria has disproportionately high existing permanent and relocatable capacity. Conversely, the share is the lowest for the Dispersed City scenario, which experiences the largest growth in the Melbourne New Growth Areas across all scenarios, an area with a relatively low share of existing permanent capacity.
    - We note that, in reality, additional enrolments could be reallocated more efficiently to school campuses with existing capacity by adjusting the school boundaries, especially in medium and high-density areas. This would increase the proportion of additional enrolments accommodated in existing buildings.
  - Total existing capacity under the model consist predominantly of relocatable capacity and is in some regions at or above the modelled limit of 40 per cent. This means that in those areas existing enrolments in relocatable buildings are moved to new permanent buildings on-site.
    - ••• Across all scenarios 8.3 per cent of existing enrolments are moved from relocatable to new permanent buildings. This amounts to 31,819 of existing government primary school enrolments and 46,570 of the total Victorian primary school enrolments.
  - Beyond this, 133 to 172 new governmental primary schools and 194 to 257 total new primary schools are needed to meet the additional enrolments.
- Secondary schools have relatively more existing capacity than primary schools and can utilise a larger share of that.
  - Secondary schools can accommodate between 57 to 62 percent of the additional enrolments until 2056 on-site in existing buildings. This share is the highest for the Distributed State scenario, as Regional Victoria has disproportionately high existing permanent and relocatable capacity. Conversely, the share is the lowest for the Dispersed City scenario, which experiences the largest growth in the

Melbourne New Growth Areas across all scenarios, an area with a relatively low share of existing permanent capacity.

- We note that, in reality, additional enrolments could be reallocated more efficiently to school campuses with existing capacity by adjusting the school boundaries, especially in medium and high-density areas. This would increase the proportion of additional enrolments accommodated in existing buildings.
- Total existing capacity under the model consist predominantly of relocatable capacity and is in some regions at or above the modelled limit of 40 per cent. This means that in those areas existing enrolments in relocatable buildings are moved to new permanent buildings on-site.
  - ... Across all scenarios 2.5 per cent of existing enrolments are moved from relocatable to new permanent buildings. This is a substantially lower share compared to the primary school system. This amounts to 6,180 of existing government secondary school enrolments and 10,589 of the total Victorian secondary school enrolments.
- Beyond this, 18 to 24 new governmental secondary schools and 33 to 47 total new secondary schools are needed to meet the additional enrolments.
- Results across scenarios show:
  - The Dispersed City, Network of Cities, and Compact City scenarios require the most additional schools under the model as in particular the primary school sector cannot utilise existing capacity where it is needed.
    - ... A larger driver is growth in the Melbourne New Growth Areas, as current capacity is managed with a larger share of relocatable buildings, often above the modelled upper limit.
    - ... In addition, for the Compact City scenario, this is due to the high share of additional enrolments in Inner Melbourne, which cannot be serviced solely by relocatable capacity and, to a lesser extent, by additional permanent capacity.
  - The Consolidated City scenario has a similar pattern as the Compact City scenario, but to a lesser extent.
  - The Distributed State scenario sees additional population in particular in areas which are better suited to accommodate additional enrolments and able to utilise the existing capacities and additional permanent capacity the best across all scenarios. This leads to a comparatively lower requirement for new schools.

| Year                           | Sc1             | Sc2               | Sc3               | Sc4                  | Sc5                  |
|--------------------------------|-----------------|-------------------|-------------------|----------------------|----------------------|
|                                | Compact<br>City | Consolid.<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                | No.             | No.               | No.               | No.                  | No.                  |
| 2023                           |                 |                   |                   |                      |                      |
| Total enrolments (to date)     | 71 080          | 71 080            | 71 080            | 71 080               | 71 080               |
| Total existing excess capacity | 0               | 0                 | 0                 | 0                    | 0                    |

# D.16 Additional infrastructure for Victorian KINDERGARTEN (excl. CENTRE-BASED DAY CARE)

| Year                                                | Sc1             | Sc2               | Sc3               | Sc4                  | Sc5                  |
|-----------------------------------------------------|-----------------|-------------------|-------------------|----------------------|----------------------|
|                                                     | Compact<br>City | Consolid.<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                     | No.             | No.               | No.               | No.                  | No.                  |
| 2023 to 2056                                        |                 |                   |                   |                      |                      |
| Additional enrolments                               | 54 904          | 54 904            | 54 904            | 54 904               | 54 904               |
| New kindergarten                                    | 832             | 832               | 832               | 832                  | 832                  |
| New kindergarten – 25 per cent existing<br>capacity | 569             | 568               | 569               | 565                  | 563                  |

Source: CIE.

# D.17 Additional infrastructure for Victorian CENTRE-BASED DAY CARE

| Year                                                | Sc1             | Sc2               | Sc3               | Sc4                  | Sc5                  |
|-----------------------------------------------------|-----------------|-------------------|-------------------|----------------------|----------------------|
|                                                     | Compact<br>City | Consolid.<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                     | No.             | No.               | No.               | No.                  | No.                  |
| 2023                                                |                 |                   |                   |                      |                      |
| Total enrolments (to date)                          | 53 622          | 53 622            | 53 622            | 53 622               | 53 622               |
| Total existing excess capacity                      | 0               | 0                 | 0                 | 0                    | 0                    |
| 2023 to 2056                                        |                 |                   |                   |                      |                      |
| Additional enrolments                               | 41 419          | 41 419            | 41 419            | 41 419               | 41 419               |
| New kindergarten                                    | 628             | 628               | 628               | 628                  | 628                  |
| New kindergarten – 25 per cent existing<br>capacity | 429             | 428               | 429               | 426                  | 425                  |

Source: CIE.

# D.18 Additional school infrastructure for government PRIMARY schools

| Year                                                    | Sc1             | Sc2               | Sc3               | Sc4                  | Sc5                  |
|---------------------------------------------------------|-----------------|-------------------|-------------------|----------------------|----------------------|
|                                                         | Compact<br>City | Consolid.<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                         | No.             | No.               | No.               | No.                  | No.                  |
| 2023                                                    |                 |                   |                   |                      |                      |
| Total enrolments (to date)                              | 380 577         | 380 577           | 380 577           | 380 577              | 380 577              |
| Existing permanent capacity                             | 344 975         | 344 975           | 344 975           | 344 975              | 344 975              |
| Existing relocatable capacity                           | 164 602         | 164 602           | 164 602           | 164 602              | 164 602              |
| Total existing capacity                                 | 509 577         | 509 577           | 509 577           | 509 577              | 509 577              |
| Excess capacity                                         | 81 193          | 81 193            | 81 193            | 81 193               | 81 193               |
| Expansion capacity                                      | 115 318         | 115 318           | 115 318           | 115 318              | 115 318              |
| Total potential capacity on existing school<br>campuses | 196 511         | 196 511           | 196 511           | 196 511              | 196 511              |

| Year                                                                               | Sc1             | Sc2               | Sc3               | Sc4                  | Sc5                  |
|------------------------------------------------------------------------------------|-----------------|-------------------|-------------------|----------------------|----------------------|
|                                                                                    | Compact<br>City | Consolid.<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                                                    | No.             | No.               | No.               | No.                  | No.                  |
| 2023 to 2056                                                                       |                 |                   |                   |                      |                      |
| Additional enrolments                                                              | 135 160         | 137 205           | 137 268           | 135 377              | 138 111              |
| Additional enrolments met by existing capacity                                     | 36 992          | 40 557            | 32 830            | 38 412               | 43 580               |
| Additional enrolments in new relocatable buildings                                 | 0               | 0                 | 0                 | 0                    | 0                    |
| Existing enrolment in relocatable buildings converted into new permanent buildings | 31 819          | 31 819            | 31 819            | 31 819               | 31 819               |
| Additional enrolments in new permanent buildings                                   | 21 690          | 21 223            | 14 039            | 18 556               | 24 772               |
| Additional enrolments in new schools                                               | 76 478          | 75 425            | 90 399            | 78 409               | 69 758               |
| New schools                                                                        | 146             | 144               | 172               | 149                  | 133                  |

Note: The sum of 'Additional enrolments met by existing capacity', 'Additional enrolments in new relocatable buildings', 'Additional enrolments in new schools' equals 'Additional enrolments.' Source: CIE.

# D.19 Additional school infrastructure for total Victorian PRIMARY schools

| Year                                                                               | Sc1             | Sc2               | Sc3               | Sc4                  | Sc5                  |
|------------------------------------------------------------------------------------|-----------------|-------------------|-------------------|----------------------|----------------------|
|                                                                                    | Compact<br>City | Consolid.<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                                                    | No.             | No.               | No.               | No.                  | No.                  |
| 2023                                                                               |                 |                   |                   |                      |                      |
| Total enrolments (to date)                                                         | 570 111         | 570 111           | 570 111           | 570 111              | 570 111              |
| Existing permanent capacity                                                        | 522 319         | 522 319           | 522 319           | 522 319              | 522 319              |
| Existing relocatable capacity                                                      | 244 833         | 244 833           | 244 833           | 244 833              | 244 833              |
| Total existing capacity                                                            | 767 152         | 767 152           | 767 152           | 767 152              | 767 152              |
| Excess capacity                                                                    | 128 016         | 128 016           | 128 016           | 128 016              | 128 016              |
| Expansion capacity                                                                 | 174 163         | 174 163           | 174 163           | 174 163              | 174 163              |
| Total potential capacity on existing school<br>campuses                            | 302 178         | 302 178           | 302 178           | 302 178              | 302 178              |
| 2023 to 2056                                                                       |                 |                   |                   |                      |                      |
| Additional enrolments                                                              | 209 568         | 209 568           | 209 568           | 209 568              | 209 568              |
| Additional enrolments met by existing capacity                                     | 61 192          | 66 452            | 53 147            | 62 213               | 69 948               |
| Additional enrolments in new relocatable buildings                                 | 0               | 0                 | 0                 | 0                    | 0                    |
| Existing enrolment in relocatable buildings converted into new permanent buildings | 46 570          | 46 570            | 46 570            | 46 570               | 46 570               |
| Additional enrolments in new permanent buildings                                   | 33 857          | 33 019            | 21 580            | 28 850               | 37 531               |
| Additional enrolments in new schools                                               | 114 519         | 110 097           | 134 840           | 118 505              | 102 089              |
| New schools                                                                        | 218             | 210               | 257               | 226                  | 194                  |

Note: The sum of 'Additional enrolments met by existing capacity', 'Additional enrolments in new relocatable buildings', 'Additional enrolments in new schools' equals 'Additional enrolments.' Source: CIE.

| 195 |
|-----|
|-----|

| Year                                                                               | Sc1             | Sc2               | Sc3               | Sc4                  | Sc5                  |
|------------------------------------------------------------------------------------|-----------------|-------------------|-------------------|----------------------|----------------------|
|                                                                                    | Compact<br>City | Consolid.<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                                                    | No.             | No.               | No.               | No.                  | No.                  |
| 2023                                                                               |                 |                   |                   |                      |                      |
| Total enrolments (to date)                                                         | 243 029         | 243 029           | 243 029           | 243 029              | 243 029              |
| Existing permanent capacity                                                        | 255 975         | 255 975           | 255 975           | 255 975              | 255 975              |
| Existing relocatable capacity                                                      | 64 850          | 64 850            | 64 850            | 64 850               | 64 850               |
| Total existing capacity                                                            | 320 825         | 320 825           | 320 825           | 320 825              | 320 825              |
| Excess capacity                                                                    | 77 796          | 77 796            | 77 796            | 77 796               | 77 796               |
| Expansion capacity                                                                 | 97 946          | 97 946            | 97 946            | 97 946               | 97 946               |
| Total potential capacity on existing school<br>campuses                            | 175 743         | 175 743           | 175 743           | 175 743              | 175 743              |
| 2023 to 2056                                                                       |                 |                   |                   |                      |                      |
| Additional enrolments                                                              | 87 061          | 92 635            | 93 920            | 93 401               | 96 176               |
| Additional enrolments met by existing capacity                                     | 42 995          | 48 329            | 44 458            | 46 120               | 48 534               |
| Additional enrolments in new relocatable buildings                                 | 1 936           | 2 563             | 2 168             | 2 540                | 3 375                |
| Existing enrolment in relocatable buildings converted into new permanent buildings | 6 180           | 6 180             | 6 180             | 6 180                | 6 180                |
| Additional enrolments in new permanent buildings                                   | 19 878          | 20 604            | 18 005            | 22 120               | 22 900               |
| Additional enrolments in new schools                                               | 22 252          | 21 139            | 29 288            | 22 620               | 21 366               |
| New schools                                                                        | 19              | 18                | 24                | 19                   | 18                   |

# D.20 Additional school infrastructure for government SECONDARY schools

Note: The sum of 'Additional enrolments met by existing capacity', 'Additional enrolments in new relocatable buildings', 'Additional enrolments in new schools' equals 'Additional enrolments.' Source: CIE.

| Year                                                    | Sc1              | Sc2               | Sc3               | Sc4                  | Sc5                  |
|---------------------------------------------------------|------------------|-------------------|-------------------|----------------------|----------------------|
|                                                         | Compact<br>City  | Consolid.<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                         | No.              | No.               | No.               | No.                  | No.                  |
| 2023                                                    |                  |                   |                   |                      |                      |
| Total enrolments (to date)                              | 445 285          | 445 285           | 445 285           | 445 285              | 445 285              |
| Existing permanent capacity                             | 477 222          | 477 222           | 477 222           | 477 222              | 477 222              |
| Existing relocatable capacity                           | 116 698          | 116 698           | 116 698           | 116 698              | 116 698              |
| Total existing capacity                                 | 593 9 <b>2</b> 0 | 593 920           | 593 920           | <b>593 920</b>       | 593 920              |
| Excess capacity                                         | 148 635          | 148 635           | 148 635           | 148 635              | 148 635              |
| Expansion capacity                                      | 179 696          | 179 696           | 179 696           | 179 696              | 179 696              |
| Total potential capacity on existing school<br>campuses | 328 331          | 328 331           | 328 331           | 328 331              | 328 331              |

#### D.21 Additional school infrastructure for total Victorian SECONDARY schools

| Year                                                                                  | Sc1             | Sc2               | Sc3               | Sc4                  | Sc5                  |
|---------------------------------------------------------------------------------------|-----------------|-------------------|-------------------|----------------------|----------------------|
|                                                                                       | Compact<br>City | Consolid.<br>City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                                                       | No.             | No.               | No.               | No.                  | No.                  |
| 2023 to 2056                                                                          |                 |                   |                   |                      |                      |
| Additional enrolments                                                                 | 176 253         | 176 253           | 176 253           | 176 253              | 176 253              |
| Additional enrolments met by existing capacity                                        | 84 709          | 92 734            | 82 010            | 86 469               | 88 925               |
| Additional enrolments in new relocatable buildings                                    | 4 183           | 5 389             | 4 405             | 4 940                | 6 781                |
| Existing enrolment in relocatable buildings<br>converted into new permanent buildings | 10 589          | 10 589            | 10 589            | 10 589               | 10 589               |
| Additional enrolments in new permanent buildings                                      | 37 457          | 36 904            | 33 567            | 39 922               | 41 085               |
| Additional enrolments in new schools                                                  | 49 904          | 41 226            | 56 271            | 44 921               | 39 463               |
| New schools                                                                           | 42              | 34                | 47                | 37                   | 33                   |

Note: The sum of 'Additional enrolments met by existing capacity', 'Additional enrolments in new relocatable buildings', 'Additional enrolments in new schools' equals 'Additional enrolments.' Source: CIE.

# Cost of additional education infrastructure

Total cost for providing additional school infrastructure includes the land cost, capital and operating costs.

New schools differ in the amount of land they require by type of school and region. Table D.22 summarises our assumed land requirement by school type and region in Victoria.

| School type      | Inner<br>Melbourne<br>(high density) | Inner<br>Melbourne<br>(other) | Middle and<br>Outer<br>Melbourne | Melbourne<br>New Growth<br>Area | Regional City | Regional<br>Centres and<br>Rural Areas |
|------------------|--------------------------------------|-------------------------------|----------------------------------|---------------------------------|---------------|----------------------------------------|
|                  | ha                                   | ha                            | ha                               | ha                              | ha            | ha                                     |
| Kindergarten     | 0.0                                  | 0.5                           | 0.0                              | 0.0                             | 0.0           | 0.0                                    |
| Primary School   | 2.0                                  | 2.0                           | 2.0                              | 3.5                             | 3.5           | 3.5                                    |
| Secondary School | 2.0                                  | 2.0                           | 5.0                              | 8.4                             | 8.4           | 8.4                                    |

#### D.22 Land requirement for new kindergarten and schools, by region in Victoria

Note: Figures show land requirement for government kindergarten and schools, however, we have assumed the same land requirements apply to non-government centre-based day car and schools.

Source: CIE in consultation with Infrastructure Victoria.

Land cost per square metre of required land differs by region and the type of development area and is summarised in table D.23.

## **D.23** Land cost for new schools

| Functional Urban Area                    | Greenfield | Infill |
|------------------------------------------|------------|--------|
|                                          | \$/sqm     | \$/sqm |
| Inner Melbourne (high density and other) | NA         | 5322   |
| Middle and Outer Melbourne               | NA         | 1806   |
| Melbourne New Growth Area                | 530        | NA     |
| Regional City                            | 161        | 480    |
| Regional Centres and Rural Areas         | 20         | 24     |

Note: Land cost values are based on a weighted average of number of sales, median price per area, and median block size by region in Victoria. Greenfield values are based on the weighted average of land uses classified as Res Dev Site, Res Land (WithBuild), Vac Res A, Vac Res B, Vac Res C, Vac Res Englobo Other, Vac Res Rural style, and Infill only on ac Res A, Vac Res B, Vac Res C. Source: Valuer-General Victoria Property sales statistics (2021), https://www.land.vic.gov.au/valuations/resources-andreports/property-sales-statistics

We have adopted the following capital costs based on information provided by Infrastructure Victoria (table D.24 and D.25):

- For additional relocatable capacity the cost per module ranges from \$0.35 million to \$1.95 for capacities of either 50, 100 or 150 students. The cost per student ranges from \$7,032 to \$12,992 depending on the size.
  - We have assumed that only module with a capacity for 50 students are used, as higher capacity modules have multiple storeys which are most likely considered for highly constrained sites.
- For additional permanent capacity at primary schools the cost ranges from \$8.11 million to \$15.54 million for capacities of 150 to 300, and \$14.25 million to \$21.21 million for secondary schools, respectively.
  - Cost per primary school student is similar for the different capacities ranging between \$51,817 to \$54,498.
  - Cost per secondary school student differs by capacity and becomes less costly the higher the capacity. Cost ranges from \$70,687 (300 capacity) to \$95,016 (150 capacity) per student.
- There are cost differences for 'new schools' depending on the type of school and location of development.
  - New schools in Inner Melbourne are assumed to be 'vertical/multi storey' schools due to highly constrained sites, and therefore, more complex and costly.
  - Across all other regions in Victoria capital cost for schools by type are the same,
- Kindergarten facilities come at a cost of \$6.5 million per facility (66 capacity).

Annual operating cost have been estimated as a percentage of total capex at 3 per cent.<sup>111</sup> This includes only the cost of physical infrastructure maintenance, and not the cost of delivering educational services such as teaching and ICT software and devices. Operating costs are estimated from 2023 to 2036 and subsequent from 2036 to 2056 and

<sup>111</sup> IV (2019), Infrastructure Provision in Different Development Settings, Metropolitan Melbourne Volume 2 Technical Appendix, p.67, available at https://www.infrastructurevictoria.com.au/wp-content/uploads/2019/08/IPIDDS-Metro-Melbourne-Vol-2-Technical-appendix\_Aug-2019.pdf.pdf

198

divided by two. This assumes that on average additional infrastructure is provided halfway through both time periods.

| D.24 Capital e | expenditure (e | excl. land | COSt) by ty | pe ot ex | kpansion on | existing sites |
|----------------|----------------|------------|-------------|----------|-------------|----------------|
|----------------|----------------|------------|-------------|----------|-------------|----------------|

| Response type                   |      |      |       |       | Enrolm | ent Capacity |
|---------------------------------|------|------|-------|-------|--------|--------------|
|                                 | 50   | 100  | 150   | 200   | 250    | 300          |
|                                 | \$m  | \$m  | \$m   | \$m   | \$m    | \$m          |
| Primary Schools                 |      |      |       |       |        |              |
| Additional relocatable capacity | 0.35 | 1.15 | 1.95  | NA    | NA     | NA           |
| Additional permanent capacity   | NA   | NA   | 8.11  | 10.90 | 13.60  | 15.54        |
| Secondary Schools               |      |      |       |       |        |              |
| Additional relocatable capacity | 0.35 | 1.15 | 1.95  | NA    | NA     | NA           |
| Additional permanent capacity   | NA   | NA   | 14.25 | 17.12 | 18.62  | 21.21        |

Note: Figures show cost for government schools, however, we have assumed the same cost apply to non-government schools. Source: Provided by Infrastructure Victoria.

| Capital expenditure | (excl. land cost) for | r new kindergarten and                    | schools                                                        |
|---------------------|-----------------------|-------------------------------------------|----------------------------------------------------------------|
|                     | • •                   | -                                         |                                                                |
|                     | Capital expenditure   | Capital expenditure (excl. land cost) for | Capital expenditure (excl. land cost) for new kindergarten and |

| Response type        | Inner Melbourne<br>(high density and other) | Rest of Victoria |
|----------------------|---------------------------------------------|------------------|
|                      | \$m                                         | \$m              |
| New kindergarten     | 6.44                                        | 6.44             |
| New primary school   | 86.58                                       | 43.57            |
| New secondary school | 173.64                                      | 86.36            |

Note: Figures show cost for government schools, however, we have assumed the same cost apply to non-government schools. Source: Provided by Infrastructure Victoria.

# Cost summary

We model the cost of providing additional education infrastructure through managing enrolment and capacity at a regional area level (SA3).

The cost of providing additional school infrastructure ranges from \$26.2 to \$35.3 billion for government schools and kindergarten infrastructure (assuming that 43 per cent of enrolments in non-government centre-based day care), and \$37.0 to \$55.3 billion for the total Victorian school infrastructure.

Capital and land cost account for the majority of cost with approximately 70 (Distributed State scenario) to 75 per cent (Compact City scenario). The difference between scenarios is largely driven by land cost. While land cost makes up only 10 per cent of the total cost in the Distributed State scenario, it amounts to 24 per cent in the Compact City scenario.

In all scenarios, the cost of additional primary school infrastructure is almost double the cost of additional secondary school infrastructure. The main driver of this is the capacity constraints in the primary school infrastructure in some regions.



#### D.26 Total education infrastructure cost until 2056

Note: Kindergarten (government) figure assumes that 43 per cent of kindergarten programs are held in non-government centre-based day care.

Data source: CIE.



#### D.27 Total capital cost until 2056

Note: Includes land cost. Kindergarten (government) figure assumes that 43 per cent of kindergarten programs are held in nongovernment centre-based day care.

Data source: CIE.

Scenarios which see more additional enrolments in Metropolitan Melbourne have substantially higher costs in terms of capital and land cost. In particular growth in Inner Melbourne and Melbourne New Growth Areas is often met with new schools rather than additional relocatable or additional permanent capacity.

Tables D.28 and D.29 summarise the different cost components by school type and scenario for only additional government school infrastructure and total Victorian school infrastructure.

| Cost                  | Type of cost            | Sc1             | Sc2                   | Sc3               | Sc4                  | Sc5                  |
|-----------------------|-------------------------|-----------------|-----------------------|-------------------|----------------------|----------------------|
|                       |                         | Compact<br>City | Consolidate<br>d City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                       |                         | \$b             | \$b                   | \$b               | \$b                  | \$b                  |
| Kindergarten          |                         |                 |                       |                   |                      |                      |
| Capital Cost          | New kindergarten        | 5.4             | 5.4                   | 5.4               | 5.4                  | 5.4                  |
| Operating Cost        |                         | 2.7             | 2.7                   | 2.7               | 2.7                  | 2.7                  |
| Land Cost             |                         | 0.6             | 0.4                   | 0.2               | 0.3                  | 0.3                  |
| Total                 |                         | 8.6             | 8.4                   | 8.3               | 8.3                  | 8.3                  |
| Primary<br>Schools    |                         |                 |                       |                   |                      |                      |
| Capital Cost          | Additional relocatable  | 0.0             | 0.0                   | 0.0               | 0.0                  | 0.0                  |
|                       | Additional permanent    | 1.1             | 1.1                   | 0.7               | 1.0                  | 1.3                  |
|                       | New school              | 7.8             | 6.8                   | 7.6               | 6.8                  | 5.9                  |
| Operating Cost        |                         | 4.4             | 3.9                   | 4.1               | 3.8                  | 3.5                  |
| Land Cost             |                         | 6.3             | 4.3                   | 3.4               | 3.0                  | 2.0                  |
| Total                 |                         | 19.6            | 16.0                  | 15.9              | 14.6                 | 12.8                 |
| Secondary<br>Schools  |                         |                 |                       |                   |                      |                      |
| Capital Cost          | Additional relocatable  | <0.1            | <0.1                  | <0.1              | <0.1                 | <0.1                 |
|                       | Additional permanent    | 1.4             | 1.5                   | 1.3               | 1.6                  | 1.6                  |
|                       | New school              | 2.3             | 1.7                   | 2.1               | 1.7                  | 1.6                  |
| Operating Cost        |                         | 1.8             | 1.6                   | 1.7               | 1.6                  | 1.6                  |
| Land Cost             |                         | 1.5             | 1.1                   | 1.1               | 0.6                  | 0.4                  |
| Total                 |                         | 7.1             | 5.9                   | 6.2               | 5.6                  | 5.2                  |
| All<br>infrastructure |                         |                 |                       |                   |                      |                      |
| Capital Cost          | Additional relocatable  | <0.1            | <0.1                  | <0.1              | <0.1                 | <0.1                 |
|                       | Additional permanent    | 2.6             | 2.6                   | 2.0               | 2.5                  | 2.9                  |
|                       | New school/kindergarten | 15.4            | 13.8                  | 15.1              | 13.8                 | 12.8                 |
| Operating Cost        |                         | 8.9             | 8.1                   | 8.5               | 8.1                  | 7.8                  |
| Land Cost             |                         | 8.5             | 5.8                   | 4.8               | 4.0                  | 2.7                  |
| Grand Total           |                         | 35.3            | 30.3                  | 30.3              | 28.5                 | 26.2                 |

# D.28 Government education infrastructure impact across scenarios until 2056

Note: Assumes that 43 per cent of kindergarten programs are held in non-government centre-based day care Data source: CIE.

| Cost                 | Type of cost            | Sc1             | Sc2                   | Sc3               | Sc4                  | Sc5                  |
|----------------------|-------------------------|-----------------|-----------------------|-------------------|----------------------|----------------------|
|                      |                         | Compact<br>City | Consolidate<br>d City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                      |                         | \$b             | \$b                   | \$b               | \$b                  | \$b                  |
| Kindergarten         |                         |                 |                       |                   |                      |                      |
| Capital Cost         | New kindergarten        | 5.4             | 5.4                   | 5.4               | 5.4                  | 5.4                  |
| Operating Cost       |                         | 2.7             | 2.7                   | 2.7               | 2.7                  | 2.7                  |
| Land Cost            |                         | 0.6             | 0.4                   | 0.2               | 0.3                  | 0.3                  |
| Total                |                         | 8.6             | 8.4                   | 8.3               | 8.3                  | 8.3                  |
| Primary<br>Schools   |                         |                 |                       |                   |                      |                      |
| Capital Cost         | Additional relocatable  | 0.0             | 0.0                   | 0.0               | 0.0                  | 0.0                  |
|                      | Additional permanent    | 1.8             | 1.7                   | 1.1               | 1.5                  | 1.9                  |
|                      | New school              | 12.0            | 10.1                  | 11.4              | 10.4                 | 8.7                  |
| Operating Cost       |                         | 6.8             | 5.8                   | 6.2               | 5.9                  | 5.2                  |
| Land Cost            |                         | 10.1            | 6.5                   | 5.2               | 4.7                  | 3.1                  |
| Total                |                         | 30.7            | 24.1                  | 23.8              | 22.4                 | 18.9                 |
| Secondary<br>Schools |                         |                 |                       |                   |                      |                      |
| Capital Cost         | Additional relocatable  | <0.1            | <0.1                  | <0.1              | <0.1                 | <0.1                 |
|                      | Additional permanent    | 2.7             | 2.6                   | 2.4               | 2.8                  | 2.9                  |
|                      | New school              | 5.6             | 3.7                   | 4.2               | 3.6                  | 3.0                  |
| Operating Cost       |                         | 4.1             | 3.1                   | 3.3               | 3.2                  | 3.0                  |
| Land Cost            |                         | 3.6             | 2.3                   | 2.2               | 1.5                  | 0.9                  |
| Total                |                         | 16.0            | 11.7                  | 12.1              | 11.2                 | 9.9                  |
| All Schools          |                         |                 |                       |                   |                      |                      |
| Capital Cost         | Additional relocatable  | <0.1            | <0.1                  | <0.1              | <0.1                 | <0.1                 |
|                      | Additional permanent    | 4.4             | 4.3                   | 3.5               | 4.3                  | 4.9                  |
|                      | New school/kindergarten | 23.0            | 19.1                  | 21.0              | 19.3                 | 17.0                 |
| Operating Cost       |                         | 13.6            | 11.6                  | 12.1              | 11.7                 | 10.9                 |
| Land Cost            |                         | 14.4            | 9.2                   | 7.6               | 6.5                  | 4.2                  |
| Grand Total          |                         | 55.3            | 44.3                  | 44.2              | 41.9                 | 37.0                 |

# D.29 Total Victorian education infrastructure impact across scenarios until 2056

Source: CIE.

# **Distributional impact**

In Victoria, education expenditure is funded by three main streams:112

- The Australian Government (the Commonwealth) provides recurrent funding for every student enrolled at any type of school and construction grants to nongovernment schools,
- The Victorian Government provides capital and recurrent funding for every student enrolled at any type of school as well as (construction) grants to non-government schools, and
- User charges for non-government schools.

The funding responsibilities between the Commonwealth and the Victorian Government are outlined in The Australian Education Act 2013 (the Act) and National School Reform Agreement - Victoria Bilateral Agreement (the Agreement).<sup>113</sup>

In order to meet the objective of this analysis, we have assumed:

- Kindergarten infrastructure costs are fully funded by the Victorian Government, with 43 per cent of preschool enrolments supported by non-government long day care centres.
- Capital, infrastructure operating and land costs for government schools are fully directly funded or through grants by the Australian Government and Victorian Government. The Australian Government is supporting construction of new schools mostly through grants which are provided to the Victorian Department of Education. We have assumed for the purpose of this analysis that all government school funding is allocated to the Victorian Government.
- Capital, infrastructure operating and land costs for non-government schools are funded through various streams, such as State and Australian Government, user charges and fundraising. We have assumed for the purpose of this analysis that all non-government school funding is allocated to the non-government sector.

Table D.30 and chart D.31 summarise the costs funded by stakeholder.

|                |            | Sc1          | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|----------------|------------|--------------|----------------------|----------------|----------------------|----------------------|
|                |            | Compact City | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                |            | \$b          | \$b                  | \$b            | \$b                  | \$b                  |
| Kindergarten   |            |              |                      |                |                      |                      |
| Capital Cost   | Government | 5.4          | 5.4                  | 5.4            | 5.4                  | 5.4                  |
| Operating Cost | Government | 2.7          | 2.7                  | 2.7            | 2.7                  | 2.7                  |
| Land cost      | Government | 0.6          | 0.4                  | 0.2            | 0.3                  | 0.3                  |

#### D.30 Education infrastructure funding by stakeholder (2021 to 2056)

112 Parliamentary Budget Office (2020), Figure 1, available at: https://pbo.vic.gov.au/response/461

113 Parliamentary Budget Office (2020), https://pbo.vic.gov.au/response/461
|                  |                       | Sc1          | Sc2                  | Sc3            | Sc4                  | Sc5                  |
|------------------|-----------------------|--------------|----------------------|----------------|----------------------|----------------------|
|                  |                       | Compact City | Consolidated<br>City | Dispersed City | Network of<br>Cities | Distributed<br>State |
|                  |                       | \$b          | \$b                  | \$b            | \$b                  | \$b                  |
| Total            | Government            | 8.6          | 8.4                  | 8.3            | 8.3                  | 8.3                  |
| Primary schools  | 6                     |              |                      |                |                      |                      |
| Capital Cost     | Government            | 8.9          | 7.9                  | 8.3            | 7.7                  | 7.2                  |
|                  | Non-government sector | 4.9          | 3.9                  | 4.2            | 4.1                  | 3.4                  |
| Operating Cost   | Government            | 4.4          | 3.9                  | 4.1            | 3.8                  | 3.5                  |
|                  | Non-government sector | 2.4          | 1.9                  | 2.1            | 2.0                  | 1.7                  |
| Land cost        | Government            | 6.3          | 4.3                  | 3.4            | 3.0                  | 2.0                  |
|                  | Non-government sector | 3.8          | 2.3                  | 1.7            | 1.7                  | 1.0                  |
| Total            | Government            | 19.6         | 16.0                 | 15.9           | 14.6                 | 12.8                 |
|                  | Non-government sector | 11.1         | 8.1                  | 8.0            | 7.8                  | 6.2                  |
| Secondary Scho   | ools                  |              |                      |                |                      |                      |
| Capital Cost     | Government            | 3.7          | 3.2                  | 3.4            | 3.3                  | 3.2                  |
|                  | Non-government sector | 4.6          | 3.1                  | 3.2            | 3.2                  | 2.8                  |
| Operating Cost   | Government            | 1.8          | 1.6                  | 1.7            | 1.6                  | 1.6                  |
|                  | Non-government sector | 2.3          | 1.5                  | 1.6            | 1.6                  | 1.4                  |
| Land cost        | Government            | 1.5          | 1.1                  | 1.1            | 0.6                  | 0.4                  |
|                  | Non-government sector | 2.1          | 1.2                  | 1.1            | 0.9                  | 0.5                  |
| Total            | Government            | 7.1          | 5.9                  | 6.2            | 5.6                  | 5.2                  |
|                  | Non-government sector | 9.0          | 5.8                  | 5.9            | 5.6                  | 4.7                  |
| All infrastructu | re                    |              |                      |                |                      |                      |
| Capital Cost     | Government            | 17.9         | 16.4                 | 17.1           | 16.4                 | 15.7                 |
|                  | Non-government sector | 9.5          | 7.0                  | 7.4            | 7.3                  | 6.2                  |
| Operating Cost   | Government            | 8.9          | 8.1                  | 8.5            | 8.1                  | 7.8                  |
|                  | Non-government sector | 4.7          | 3.5                  | 3.7            | 3.6                  | 3.1                  |
| Land cost        | Government            | 8.5          | 5.8                  | 4.8            | 4.0                  | 2.7                  |
|                  | Non-government sector | 5.9          | 3.4                  | 2.8            | 2.5                  | 1.5                  |
| Total            | Government            | 35.3         | 30.3                 | 30.3           | 28.5                 | 26.2                 |
|                  | Non-government sector | 20.1         | 13.9                 | 13.9           | 13.4                 | 10.8                 |

Note: Figures are denoted in \$2022/23 dollars. Source: CIE



#### D.31 Education infrastructure funding by stakeholder (2021 to 2056)

Note: Figures are denoted in \$2022/23 dollars. Source: CIE

# *E Electricity*

- Additional electricity infrastructure requirements under the urban development scenarios are two-fold and include:
  - power generation and transmission networks, and
  - distribution networks.
- Operational consumption and demand estimates show minimal variation across different scenarios.
- By 2056, approximately 60 GW of power generating capacity will be installed, an increase of 39 GW compared to today.
  - The transformation to more renewable energy is estimated to cost ~\$42 billion for the anticipated growth, which is the same across scenarios. This includes the installation of utility-scale wind and solar farms as well as storage solutions. Note that private rooftop solar PV provision and costing have not been included in the analysis.
- Overall, scenarios do not differ significantly in terms of maximum demand, which is driven by the somewhat marginal differences in residential and non-residential consumption relative to the AEMO ISP (2022) consumption and demand forecast
  - By 2056, the distribution network will need a maximum (peak) demand capacity ranging between 17 089 to 17 597 MW depending on the scenario, which is almost double the current capacity.
  - Population and employment growth are the main drivers of this increase. Other drivers include changes in the dwelling typology, occupancy rates, rooftop solar PV uptake, climate zones, EV uptake and industry sector composition across scenarios, which lead to varying demand profiles.
- The total expected cost for augmenting the distribution network is estimated at a zone substation level. The additional distribution network costs are \$40 to \$48 billion across all scenarios the highest being the Dispersed City and Network of Cities scenarios, with the Compact City scenario being the lowest.

Table E.1 summarises the total installed capacity and the total operational maximum demand by 2056 and table E.2 the cumulative capital and operating cost for the power generation, transmission network and distribution network by 2056.

|                                                  | Sc1             | Sc2                   | Sc3               | Sc4                  | Sc5                  |
|--------------------------------------------------|-----------------|-----------------------|-------------------|----------------------|----------------------|
|                                                  | Compact<br>City | Consolidat<br>ed City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                  | MW              | MW                    | MW                | MW                   | MW                   |
| Total Installed Capacity by 2056                 | 59 494          | 59 494                | 59 494            | 59 494               | 59 494               |
| Total Dispatchable Capacity by 2056              | 15 589          | 15 589                | 15 589            | 15 589               | 15 589               |
| Additional installed capacity (2056 vs. 2021)    | 39 050          | 39 050                | 39 050            | 39 050               | 39 050               |
|                                                  | MW              | MW                    | MW                | MW                   | MW                   |
| Total Maximum demand by 2056                     | 17 089          | 17 290                | 17 597            | 17 536               | 17 552               |
| Additional Maximum (Peak) Demand (2056 vs. 2021) | 8 185           | 8 386                 | 8 693             | 8 632                | 8 648                |

#### E.1 Electricity infrastructure across scenarios by 2056

Source: CIE Model, AEMO ISP (2022), 2022 Final ISP results workbook – Step Change, https://aemo.com.au/en/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp

#### E.2 Cumulative electricity infrastructure costs across scenarios by 2056

|                                                                             | Sc1             | Sc2                   | Sc3               | Sc4                  | Sc5                  |
|-----------------------------------------------------------------------------|-----------------|-----------------------|-------------------|----------------------|----------------------|
| Cumulative cost from 2021 to 2056                                           | Compact<br>City | Consolidat<br>ed City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                                             | \$b             | \$b                   | \$b               | \$b                  | \$b                  |
| Additional Power Generation and Transmission                                | Network infr    | astructure            |                   |                      |                      |
| Capital Cost – Power Generation                                             | 25.8            | 25.8                  | 25.8              | 25.8                 | 25.8                 |
| Capital Cost – Transmission Network                                         | 3.5             | 3.5                   | 3.5               | 3.5                  | 3.5                  |
| Operating and maintenance cost – Power<br>Generation & Transmission Network | 13.0            | 13.0                  | 13.0              | 13.0                 | 13.0                 |
| Sub-total                                                                   | 42.3            | 42.3                  | 42.3              | 42.3                 | 42.3                 |
| Additional Distribution Network Infrastructure                              |                 |                       |                   |                      |                      |
| Capital Cost – Distribution Network                                         | 15.5            | 17.5                  | 23.4              | 23.6                 | 21.1                 |
| Operating Cost – Distribution Network                                       | 24.1            | 24.3                  | 24.7              | 24.6                 | 24.6                 |
| Sub-total                                                                   | 39.6            | 41.9                  | 48.1              | 48.1                 | 45.7                 |
| Total Additional Electricity Infrastructure                                 |                 |                       |                   |                      |                      |
| Capital Cost                                                                | 44.8            | 46.9                  | 52.8              | 52.9                 | 50.4                 |
| Operating and maintenance cost                                              | 37.1            | 37.3                  | 37.6              | 37.5                 | 37.6                 |
| Grand Total                                                                 | 81.9            | 84.2                  | 90.4              | 90.5                 | 88.0                 |

Source: CIE Model, AEMO ISP (2022), 2022 Final ISP results workbook – Step Change, https://aemo.com.au/en/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp

### Electricity infrastructure in Victoria

Electricity infrastructure is an essential utility service and is typically divided into three main components:

- the power generation infrastructure and the transmission network, which transports electricity over long distances from power generation sources to local distribution networks,
- the distribution network, which delivers electricity to homes and businesses in urban and regional areas, and
- the customer connection, which involves the installation of metering and other equipment to connect individual premises to the distribution network.

Each of these components contributes to the overall cost and planning of the electricity infrastructure.

In recent years, Victoria has progressed in transitioning towards a cleaner and more sustainable electricity system. This transition has been driven by various factors, including increasing demand for renewable energy, the emergence of new technologies such as electric vehicles and energy storage, and changing consumer preferences.

In order to meet these challenges and capitalise on the opportunities presented by the transition to a clean energy future, the Australian Energy Market Operator (AEMO) has developed the Integrated System Plan (ISP) 2022<sup>114</sup> and Electricity Statement of Opportunities (ESOO) 2022.<sup>115</sup>

AEMOs ISP is a comprehensive long-term planning document that provides a roadmap for the future development of the national electricity market.<sup>116</sup> The ISP is updated regularly and provides projections and scenarios for generation and transmission investments until 2050.

Some of the key development that can be expected over the coming decades include:

- Growth of renewable energy sources, such as solar and wind power, with Victoria expected to have over 28GW of solar capacity (both solar farms and distributed PV) and 12GW of wind capacity by 2050.<sup>117</sup>
- Increasing adoption of electric vehicles (EVs), with Victoria expected to have around 2.2 million EVs on the road by 2035 and 6.5 million by 2050, up from the current number of around 18 000.<sup>118</sup>

118 AEMO Draft IASR (2023), Detailed Electric Vehicle Workbook - Draft 2023 IASR – Orchestrated Change, https://aemo.com.au/consultations/current-and-closedconsultations/2023-inputs-assumptions-and-scenarios-consultation

<sup>114</sup> https://aemo.com.au/-/media/files/major-publications/isp/2022/2022-documents/2022integrated-system-plan-isp.pdf?la=en

<sup>115</sup> https://aemo.com.au/-/media/files/electricity/nem/planning\_and\_forecasting/nem\_esoo/2022/2022-electricitystatement-of-opportunities.pdf?la=en

<sup>116</sup> https://aemo.com.au/-/media/files/major-publications/isp/2022/2022-documents/2022integrated-system-plan-isp.pdf?la=en

<sup>117</sup> AEMO ISP (2022), Final ISP results workbook - Step change scenario, https://aemo.com.au/en/energy-systems/major-publications/integrated-system-planisp/2022-integrated-system-plan-isp

- Significant investment in energy storage, grid modernisation, and demand response technologies to support the growth of renewable energy and EVs.
- The need to balance electricity supply and demand in real-time to maintain the stability and reliability of the electricity system.
- Increasing use of distributed energy resources, such as rooftop solar and battery storage, which will require changes to the traditional electricity network and business models.
- The continued retirement of aging coal-fired power plants and the need for replacement with cleaner and more flexible sources of energy.
- Increasing demand for energy management services, including energy efficiency and demand response, to help consumers and businesses manage their electricity consumption and costs.

The following chapter summarises our approach and estimates of the future provision and costs of the electricity infrastructure in Victoria for different populations scenarios and is structured as follows:

- Residential and non-residential consumption and demand,
- Approach to estimate the additional infrastructure needed,
- Cost of additional infrastructure, and
- A summary of cost by scenario.

Box E.3 summarises the terminology that will be used throughout this report to describe electricity consumption, demand and supply.

#### E.3 Definitions used throughout this chapter

There are four main concepts in relation to the electricity network relevant for this analysis:<sup>119</sup>

- **Operational'**: Refers to the electricity used by residential, commercial and large industrial consumers, as supplied by scheduled, semi-scheduled and significant non-scheduled generating units.
  - Significant non-scheduled generating units include, for example, large-scale wind or solar generators greater than or equal to 30 MW, but not rooftop solar PV.
- **Consumption'**: Refers to electricity used over a period of time (kWh, MWh, or GWh). Consumption can also be disaggregated into:
  - 'Operational consumption' which describes consumption which is supplied by 'operational' generating units (see above). For example, 'Operational consumption' decreases as rooftop solar PV generation increases.

<sup>119</sup> AEMO (2021), Operation Consumption Definition, available at: https://aemo.com.au/-/media/files/electricity/nem/planning\_and\_forecasting/demand-forecasts/operational-consumption-definition.pdf

- **'Demand'**: Describes electricity used at a particular time (kW, MW, or GW). This is relevant when discussing peak or maximum electricity demand. In the context of this analysis, we will refer to peak or maximum *operational* demand.
- 'Installed capacity': Represents the theoretical maximum generation capacity.
- **'Electrification':** The process of powering by electricity by changing over from an earlier fossil fuel power source, such as natural gas.

### Residential electricity use in Victoria

As an essential service, all dwellings constructed in Victoria are connected to the electricity network. Operational consumption is driven by a range of factors:

- Energy rating of a dwelling,
- Rooftop solar PV uptake,
- Electric Vehicle (EV) uptake,
- Type of dwelling,
- Occupancy rate, and
- Climate zone (chart E.5).

For example, while electricity consumption might increase with more electrification overall operational consumption could decrease due to a high uptake of rooftop solar PV.

Chart E.4 shows the average annual operational consumption in 2021 by climate zone, type of dwelling, with and without rooftop solar PV and occupancy rate (1 to 4 residents). Note that those figures exclude the consumption from EVs.



E.4 Annual residential operational consumption for different drivers (2021)

Note: Based on 6 star and 7 star rated dwellings. ACIL Allen note that, for the modelling it has been assumed that all Class 2 dwellings meet the Whole of House requirements using an 'all equipment pathway' and that effectively solar PV cannot be installed to offset the energy of other regulated buildings elements in SOUs. This assumption has been made due to the current practical difficulties with installing solar PV on Class 2 buildings.<sup>120</sup>

Data source: Frontier Economics (2020), Residential energy consumption benchmarks for Victoria; ACIL Allen (2021), National Construction Code 2022 Consultation Regulation Impact Statement for a proposal to increase residential building energy efficiency requirements, electricity consumption data provided by dwelling type (house/apartments, with/without rooftop solar pv, and energy efficiency rating), and climate zone. https://acilallen.com.au/uploads/projects/377/ACILAllen\_RISProposedNCC2022\_2021.pdf



#### E.5 Victoria Climate Zone Map

Data source: ABCB (2019) Victoria Climate zone map, available at: https://www.abcb.gov.au/sites/default/files/resources/2020//ClimateZoneMapVIC.pdf

Alternative growth paths will impact on the total operational consumption and peak demand for electricity through a number of channels:

- development in different climate zones
- lower density development will likely generate lower electricity consumption due to higher rooftop solar PV uptake, and
- the uptake of electric vehicles (EV) and battery energy storage systems.

Electricity consumption tends to be highest in the winter months for all climate zones, while consumption patterns vary between climate zones in summer and are higher in zones further from the coast such as Zone 4 and 7 (chart E.5). Zones 4 and 7 are hotter and likely to have a high uptake of air conditioning. A higher share of people living in those areas will lead to an increase in average operational consumption per dwelling across all scenarios.

<sup>120</sup> ACIL Allen (2021), National Construction Code 2022 Consultation Regulation Impact Statement for a proposal to increase residential building energy efficiency requirements, Box 4.1, p.62, https://acilallen.com.au/uploads/projects/377/ACILAllen\_RISProposedNCC2022\_2021.pdf

PV uptake is forecast to increase substantially in the coming years as energy efficiency measures and the use of home rooftop solar PV systems is incentivised by the Victorian Government's Solar Homes Program.<sup>121</sup> A higher share of houses will lead to a decline in average operational consumption per dwelling across all scenarios.

EV uptake is forecasted to increase substantially in the coming years. For scenarios that involve a higher utilization of EVs (i.e., more vehicle kilometres travelled), the average operational consumption will be higher.

All of these factors suggest that operational consumption and peak demand will be higher for a development scenario with more people in high density infill areas or scenarios which have a higher EV uptake.

Chart E.6 highlights the residential operational consumption and peak demand. Future consumption can be broken down in three main components:

- Electric vehicles consumption, whose share of total consumption increases from <0.1 per cent to 34 per cent by 2036 and 57 per cent by 2056,</p>
- Electrification consumption other than from electric vehicles, whose share increases to 29 per cent by 2036 and 27 per cent by 2056, and
- Other consumption, which decreases in absolute and relative terms due to increased energy efficiency of buildings.



#### E.6 Residential operational consumption and peak demand forecast

Note: AEMO forecast is up to 2050. We have applied a linear trend until 2056. ISP 2022-Step Change scenario was adjusted for a higher EV uptake under the previously published Draft IASR 2023.

Data source: AEMO ISP (2022), Final ISP results workbook - Step change scenario, https://aemo.com.au/en/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp

<sup>121</sup> https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nemforecasting-and-planning/forecasting-and-planning-data/transmission-connection-pointforecasting/victoria

### Non-residential electricity use in Victoria

Non-residential electricity connections, such as businesses and industry are major electricity users, and accounted for approximately 75 per cent of the total operational electricity consumption in 2022. The future electricity demand and peak demand will be primarily driven by electric vehicle uptake, the moving away from fossil fuels (electrification) and domestic hydrogen production (chart E.7).

Rooftop solar PV plays only a subordinate role in covering consumption for businesses and industry. Currently it provides only  $\sim$ 2 per cent of the total consumption, while this share will increase to  $\sim$ 4 per cent by 2056, according to the AEMO ISP forecast.



#### E.7 Victorian electricity consumption profile for non-residential connections

Data source: AEMO ISP (2022), Final ISP results workbook – Step change scenario, https://aemo.com.au/en/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp

Alternative growth paths will impact on the non-residential total operational consumption and peak demand through a number of channels:

- development in different climate zones, ie further from the coast, will have a greater impact on peak electricity load requirements as these areas are hotter and likely to have a high uptake of air conditioning,
- share of the energy intensive industry sector,, i.e., scenarios which see a more prevalent role of the traditional industrial sector (such as mining, manufacturing, or transport) will generally have a higher consumption,
- the uptake of electric vehicles and battery energy storage systems.

Data on electricity use by industry sector is available from the Australian Energy Statistics by state and territory.<sup>122</sup> This data summarises energy consumption by fuel

<sup>&</sup>lt;sup>122</sup> Department of Climate Change, Energy, the Environment and Water, Australian Energy Statistics, Table K, September 2022

type for each ANZSIC division<sup>123</sup>. We have used this data to estimate electricity consumption per employee based on the employment projections for each scenario provided by IV (chart E.8). We have not separately estimated different shares of rooftop solar PV uptake by industry due to its limited role for non-residential connections.<sup>124</sup>

Overall, operational non-residential consumption will be higher for a scenario with a higher share of traditional industry sectors in the economy.



E.8 Operational consumption per job, by industry sector

<sup>a</sup> Traditional industry (IV category) includes Mining, Manufacturing, Electricity generation, Transport, Gas supply, Water and waste from the Australian Energy Statistics.

<sup>b</sup> Commercial and services (Australian Energy Statistics category) includes Business & Government Services, Hospitals, Leisure Medical, Social & Community services, Retail Hospitality, School Education, and Tertiary Education from the IV jobs projections forecast.

Data source: CIE, IV job projections, Department of Climate Change, Energy, the Environment and Water, Australian Energy Statistics, Table K, September 2022

### Approach to estimate additional electricity infrastructure

We have adopted the following approach for estimating additional infrastructure requirements (chart E.9):

- Additional power generation and transmission network infrastructure requirements is based on the AEMO's Integrated System Plan (2022)
  - We assume that planned power generation capacity will not differ between scenarios, as generation infrastructure is typically designed to ensure a reliable and stable power supply. By building infrastructure with some excess capacity, it allows for flexibility to accommodate unexpected changes or growth in consumption, ensuring a margin of safety and system reliability. Cost will, therefore, not vary significantly between scenarios.

<sup>123</sup> The Australian and New Zealand Standard Industrial Classification (ANZSIC) has been developed for use in the compilation and analysis of industry statistics in Australia and New Zealand.

<sup>&</sup>lt;sup>124</sup> Rooftop solar PV generation is forecasted to provide only a marginal share (<4 percent) of business and commercial energy consumption.

- Future power generation will be more dispersed than today give the transition to renewable energy source. More additional transmission infrastructure could be needed the larger the spatial mismatch between renewable energy zones (REZ) (areas where utility-scale wind and solar farms are located) and the area where people live, and work is. Given the large uncertainty around the location of REZs we have assumed that the cost of additional transmission infrastructure will be the same across scenarios.
- Additional distribution network infrastructure requirements, which includes the zone substations, sub-transmission lines, transformers and feeders, is based on the excess capacity in the network and the need to augment the system if capacity constraints occur.
  - This will differ by scenario as population growth will happen in different areas. In addition, residential and non-residential consumption and peak demand will differ due to various factors as outlined in the previous sections.
- The additional costs of connection are estimated for each scenario as this cost is driven, amongst other factors, by Greenfield versus Infill development. This cost is part of the local infrastructure in development areas and not separately estimated in this chapter.



#### E.9 Conceptual methodology to estimate total electricity infrastructure need

<sup>a</sup> This includes the capital and fixed and variable operating cost of new power generator capacity, fuel cost, renewable energy zone (REZ) and flow-path augmentation.

b This includes substations, sub-transmission lines, transformers and feeders Data source: CIE.

#### Approach to measure distribution network augmentation

The electricity distribution network in Victoria consists of a complex system of poles, wires, substations, and transformers that deliver electricity from power generators to homes, businesses, and other facilities throughout the state. The network is owned and operated by six different companies: AusNet Services, Citipower, Jemena, Powercor Australia, United Energy Distribution, and Essential Energy.<sup>125</sup>

The distribution network carries power from transmission network terminal stations to zone substations, where it is stepped down to lower voltages then carried along local power lines which are connected to individual homes and businesses. Each distribution company is responsible for maintaining its own portion of the network, and includes, amongst other, ongoing maintenance and upgrades to the network. We have aligned the catchment for each of the zone substations to the respective SA2s (table E.10).

| Distributors     |     | Zone substation | Population | Employment |
|------------------|-----|-----------------|------------|------------|
|                  | no. | Per cent        | Per cent   | Per cent   |
| AusNet           | 53  | 21.6            | 25.2       | 17.1       |
| Citipower        | 35  | 14.3            | 10.0       | 24.5       |
| Essential Energy | 20  | 8.2             | 0.1        | 0.1        |
| Jemena           | 28  | 11.4            | 13.3       | 11.4       |
| Powercor         | 63  | 25.7            | 28.3       | 24.8       |
| United Energy    | 46  | 18.8            | 23.1       | 22.1       |
| Total            | 70  | 100.0           | 100.0      | 100.0      |

#### E.10 Zone substations by distributor

Note: Historical population and population forecasts of SA2s are converted to a substation point basis by mapping substations to SA2s and based on the boundaries of each substation. Population and employment are allocated to each SA2 based on percentage overlaps calculated.

Source: CIE, Energy Networks Australia Opportunities for demand management and renewables https://www.energynetworks.com.au/projects/network-opportunity-maps/

The major driver of capacity expansion of electricity distribution infrastructure is peak or maximum electricity demand — that is, the maximum amount of electricity required at any time.

Box E.11 summarises in more detail the definition of distribution network capacity and when distributors are required to augment the network. Map E.12 presents the catchment and secure capacity of each zone substation by distributor.

<sup>125</sup> https://www.aer.gov.au/consumers/who-is-my-distributor/victoria

#### E.11 Distribution Network Capacity

The distribution network is, if at all, usually constrained at the zone substation and/or sub-transmission line level. Zone substations and sub-transmission lines are considered to be constrained when the operational 10% PoE demand forecast exceeds the secure capacity:<sup>126</sup>

- **10% PoE demand forecast** is the peak or maximum demand forecast which has a 10% probability of being exceeded (PoE) in any year (i.e., an upper range forecast likely to be exceeded only once every 10 years), based on normal expected growth rates and one in ten-year extreme temperature condition.
- The secure capacity of a zone substation is the capacity of supply during single contingency emergency. Usually, the most severe or restrictive faults and outages are considered when assessed and is often referred to as its 'Firm' or N-1 rating.

Secure capacity is determined by a number of factors such as:127

- Design working temperature and design of the particular network (which may impose loading or operational constraints)
- Thermal loading and voltage stability under outage conditions

Conductor size and type, and plant and equipment ratings.

<sup>126</sup> https://www.aer.gov.au/system/files/ActewAGL%20-%20D5%20Distribution%20Network%20Augmentation%20Standard%20Rev%2001%20-%202014.pdf , p. 3,4 and 7

<sup>127</sup> AusNet, 2022, Distribution Annual Planning Report December 2022-2026, https://dapr.ausnetservices.com.au/ausnet\_data/AusNet%20Services\_DAPR%202022-2026%20(Final)\_v1.1.pdf, page 9.



#### E.12 Secure capacity of Victorian distribution substations

Data source: Energy Networks Australia Opportunities for demand management and renewables https://www.energynetworks.com.au/projects/network-opportunity-maps/

Chart E.13 outlines our approach to estimate the existing secure capacity and capacity constraints for each substation in Victoria:

- 1 Total annual operational consumption by zone substation is separately estimated for residential and non-residential customers for each scenario including the Victoria in Future (VIF) forecast<sup>128</sup>:
  - a) SA2s are matched to the catchment of each zone substation.
  - b) For residential connections the type of dwelling, climate zone, occupancy rates, rooftop solar PV uptake (linked to dwelling type), and total EV kilometres travelled are used to estimate total operational consumption. This is based on the average consumption per dwelling estimates described in the previous section (see chart E.4)
  - c) For non-residential connection the total demand for each industry sector is estimated as described in the previous section (see chart E.7)

We assume that the VIF forecast underpins the consumption forecasts developed by AEMO ISP (2022) – *Step change scenario*.<sup>129</sup> Based on the VIF estimates we calculate operational consumption and demand using the residential and non-residential unit estimates which is then adjusted to match the AEMO ISP (2022) – *Step change scenario*.<sup>130</sup> The parameter that is needed to adjust the VIF forecast to the AEMO

<sup>&</sup>lt;sup>128</sup> We assume that the Victoria in Future forecast matches the dwelling, population and employment projections which underpin the AEMO ISP forecast.

<sup>&</sup>lt;sup>129</sup> Note that we have adjusted this scenario by the more recently published EV uptake figures.

<sup>&</sup>lt;sup>130</sup> This means that the model consumption estimate is multiplied with a parameter to match the AEMO forecast. Our model matches the operational residential consumption within a

forecast is then used to adjust the operational consumption and demand forecast for each scenario.  $^{131}$ 

- 2 Total operational consumption is then multiplied with an operational consumptionto-maximum (peak) operational demand ratio based on the AEMO ISP (2022) – *Step change scenario* forecast. Note that this ratio is based on whole Victoria and might differ by regions and other factors. This provides us with a total maximum (peak) demand estimate for each zone substation per annum.
- 3 The remaining secure capacity or capacity constraint can then be calculated as the difference between the actual existing secure capacity<sup>132</sup> and the forecasted maximum (peak) operational demand for each zone substation.

#### E.13 Approach to estimate total operational maximum demand by zone substation



Data source: CIE.

- 131 Any difference between the AMEO forecast (assumed to be based on VIF) will then only be driven by the underlying difference of each scenario (such as dwelling typology, climate zones etc.)
- 132 Data on each zone substation's secure capacity is publicly available here: https://networkopportunity-maps.s3.ap-southeast-

2.amazonaws.com/constraints/published/available\_capacity\_timeseries.csv

margin of 2 percentage points with the AEMO forecast in 2021, however, operational nonresidential consumption is 15 per cent higher in our model compared to AEMOs forecast in 2021.

### Additional capacity required by population scenario

Under each population distribution scenario, the additional population across Victoria is the same, however, allocation to regions across Victoria varies considerably.

Map E.1510.5 shows the capacity shortfall at a zone substation level (i.e., existing secure capacity is not sufficient to service the operational maximum (peak) demand) by example for the Dispersed City scenario by 2036. While most regions have enough secure capacity to accommodate more people and jobs, some areas in inner and outer Melbourne, and the Melbourne new growth areas as well as some regional cities need additional capacity.



#### E.14 Zone substation secure capacity shortfall, Scenario 3 (2036)

Data source: CIE, Energy Networks Australia Opportunities for demand management and renewables https://www.energynetworks.com.au/projects/network-opportunity-maps/, AEMO ISP (2022), Final ISP results workbook - Step change scenario, https://aemo.com.au/en/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-systemplan-isp

On average across the scenarios, operational maximum (peak) demand is set to increase by 42 to 43 per cent by 2036 and 92 to 98 per cent by 2056.

Chart E.15 and E.16 show total maximum demand in 2056 for each scenario relative to the AEMO ISP (2022) maximum demand forecast in 2056 with and without adjustment for EV utilisation across scenarios:

- Overall, scenarios do not differ significantly in terms of maximum demand, which is driven by the somewhat marginal differences in residential and non-residential consumption relative to the AEMO ISP (2022) consumption forecast in 2056.
- The highest increase in operational consumption from *dwellings* can be expected from the Compact City scenario which sees relatively more apartments compared to houses being developed. As apartments have on average a higher operational energy demand due to the lack of rooftop solar PV systems.

- The highest increase in operational consumption from *electric vehicles* can be expected from the Distributed State scenario which sees relatively more vehicle kilometres travelled compared to other scenarios.
- For non-residential consumption, the type of industry is the main driver. The Dispersed City scenario sees relatively more growth in the energy intensive traditional industries, leading to a higher overall operational consumption.
- In total, the Dispersed City scenario has the highest operational consumption across scenarios due to more EV kilometres travelled and more energy intensive traditional industries compared to the Compact and Consolidated City scenarios. The Distributed State and Network of Cities scenarios have a slightly lower operational consumption compared to the Dispersed City scenario. Both scenarios have higher EV kilometres travelled but less apartments and less energy intensive traditional industries compared to the Dispersed City scenario.

# E.15 Estimated consumption by scenario relative to AEMO ISP (2022) consumption forecast in 2056 – WITHOUT EV's



Data source: CIE, AEMO ISP (2022).





Data source: CIE, AEMO ISP (2022).

As overall operational consumption is the main driver of operational maximum (peak) demand, this pattern can also be observed in the additional secure capacity that is required in the future. By 2056, across all scenarios more than 8 000 MW of additional zone substation capacity must be created, which is almost double the currently available capacity. The main driver of this development is population and industry growth as well as the move away from fossil fuels to renewable energy and electric vehicle uptake in the coming years. Additional capacity is distributed across the State depending on where development is happening.

In summary (chart E.17):

- Metropolitan Melbourne (i.e., inner, middle, outer Melbourne and Melbourne new growth areas) sees the greatest share of additional capacity. Estimates range from as high as 86 per cent (Compact City scenarios) to as low as 61 per cent (Scenario 3) by 2056, and
- Regional Victoria (i.e., regional centres and rural areas, and regional cities) account for the remainder with shares ranging from 14 to 39 per cent, respectively.
- Of all functional urban areas, only regional areas have on average sufficient existing capacity until 2036. For the remainder, substations need to be augmented in the meantime.



#### E.17 Additional capacity and existing capacity, by scenario (2036 and 2056)

Note: Catchments of substations are very large in regional areas and cover often regional cities and regional areas. For the purpose of this chart most catchments were allocated to the regional cities rather than the regional area. Data source: CIE.

### Cost of additional electricity infrastructure

The following section provides details on how the cost estimates for the power generation and transmission infrastructure, and the distribution network infrastructure are derived.

#### Cost of power generation and high-voltage transmission

For the purpose of this analysis, we have used AEMOs ISP 'Step-Change' Scenario cost estimates.

A summary AEMOs relevant key assumptions, cost methodology, plans and recommendations for the development of renewable energy and transmission infrastructure in Victoria is provided at the end of this chapter on page 227.

Total installed capacity (TIC) will increase over the coming decades from 20 GW to almost 60 GW in Victoria. The main TIC will be created in the non-dispatchable power generation sector which includes distributed battery storage and PV, and wind and solar farms. The share of TIC consisting of dispatchable capacity (fossil fuels, hydro and utility scale storage) is expected to decrease from 50 per cent today to less than 25 per cent by 2050 in the AEMO step-change scenario (chart E.18). AEMO estimates the cost for the additional installed capacity at \$1.6 billion per year for the next decade, and as more renewable capacity is installed at a maximum of \$5.7 billion per annum by 2050.<sup>133</sup> Note that those cost do not include the cost for distributed rooftop solar PV on residential homes.



#### E.18 Total installed capacity

Data source: AEMO ISP (2022), 2022 Final ISP results workbook – Step Change, https://aemo.com.au/en/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp



#### E.19 Annual additional power generation and transmission cost

Data source: AEMO ISP (2022), 2022 Final ISP results workbook – Step Change, https://aemo.com.au/en/energy-systems/majorpublications/integrated-system-plan-isp/2022-integrated-system-plan-isp

133 AEMO 2022 ISP – Step change scenario https://aemo.com.au/-/media/files/majorpublications/isp/2022/2022-documents/generation-outlook.zip?la=en,

#### Cost of distribution network

The Australian Energy Regulator is responsible for economic regulation of electricity transmission and distribution network providers and approves capital and operating expenditures for the distribution network. The *Distribution Annual Planning Reports* (DAPR) prepared by providers identifies, amongst other things, existing network capacity and infrastructure deficiencies including projections for capacity shortages and their asset renewal strategy. Electricity network providers develop the smallest viable network augmentation in response to demand.

The decision by AER for infrastructure investment is based on an assessment of:134

- recorded actual electricity demand,
- demand forecasts (including new customers),
- asset condition, and
- statutory and regulatory obligations.

For the purpose of this analysis, we have used long-run marginal cost (LRMC) to estimate the cost of capacity expansion and augmentation. Box E.20 provides a high-level overview of LRMC methodologies.

#### E.20 LRMC methodologies

LRMC are most commonly used by electricity distributor and the AER. Under the National Electricity Rules (NER) a distributor's tariff structure statement (TSS) must comply with a number of pricing principles. One of the required pricing principles is

that each tariff must be based on LRMC.135

There are two methodologies which are commonly used to measure the financial cost of LRMC:

- the perturbation method, or Turvey approach, which specifies the increment as the demand from the expected profile to a different expected profile, and
- the average incremental cost approach (AIC), which specifies the increment as the future change in demand from current demand.

There are several variations to these approaches which can be used, such as in distributors tariff structure statement (TSS). These approaches follow similar steps diverging only in the definition of the hypothetical demand increment which is used to measure the cost increment. The demand increment chosen is important as it changes what we are conceptually measuring with LRMC. The interpretation of LRMC depends on how this increment is defined.

<sup>134</sup> AusNet, 2022, Distribution Annual Planning Report 2022 – 2026, https://dapr.ausnetservices.com.au/ausnet\_data/AusNet%20Services\_DAPR%202022-2026%20(Final)\_v1.1.pdf, page 18,112.

<sup>135</sup> https://www.aer.gov.au/system/files/AER%20-%20Explanatory%20note%20-%20Network%20tariffs%20and%20long%20run%20marginal%20cost\_0.pdf

- Under the perturbation method, LRMC can be interpreted as the cost of bringing forward or delaying (in the case of a demand decrement) capital and operating costs. This approach assumes that future growth cannot be avoided but can be delayed or brought forward.<sup>136</sup> This conceives marginal cost as a time related dynamic concept.
- Under the AIC approach marginal cost can be interpreted as the cost of forecast growth, from current demand levels, occurring. This interpretation is appealing, where future demand can be defrayed or substituted. Here marginal cost is avoidable.

Distributors have been given flexibility to implement LRMC to best suit their network and consumer characteristics, while most use the AIC method.<sup>137</sup>

Cost for augmenting zone substations will differ depending on many factors, such as the type of technology used, the availability of materials and labour, and local market conditions, among others, but also the currently installed capacity. The per unit cost of augmenting a small zone substation from 10 to 20 MW will likely be higher than augmenting a larger zone substation from 50 to 60 MW. This can be observed in the LRMC estimates by zone substation developed for Powercor (chart E.21):<sup>138</sup>

- Each zone substation has a minimum cost of \$45/kVA/year for maintenance, and
- the higher the relative capacity shortfall gap between existing capacity and forecasted operational maximum (peak) demand, the higher is the LRMC.
  - For example, the average unit cost per kVA of capacity for a 30 per cent increase is \$67/kVA/year for five years while the average cost for a 50 per cent increase is \$112/kVA/year for five years (exclusive of maintenance).

The LRMC estimates are based on the 5-year regulatory period of 2021/22 to 2025/26 and have been annualised.

<sup>&</sup>lt;sup>136</sup> Turvey discusses 'central system costs', which are not avoidable, hence in determining marginal cost, it is not a question of whether these costs are incurred or not, but rather their timing. For example, in the case of water infrastructure, Turvey argues that economy in water use may enable the next investment to be delayed, but would unlikely result in in it to be altogether dropped. Turvey, R. (1976), Analysing the Marginal Cost of Water Supply, Land Economics, 52(2), p. 158-168

<sup>137</sup> https://www.aer.gov.au/system/files/AER%20-%20Explanatory%20note%20-%20Network%20tariffs%20and%20long%20run%20marginal%20cost\_0.pdf

<sup>138</sup> Powercor Tariff Structure Statement 1 July 2021 to 30 June 2026, https://media.powercor.com.au/wp-content/uploads/2021/06/24183829/Final-Decision-CitiPower-distribution-determination-2021%E2%80%9326-Revised-Tariff-Structure-Statement-April-2021-Clean.pdf, p.23



E.21 LRMC (\$/kVA/year) by relative increase in capacity

Data source: CIE, Powercor Tariff Structure Statement 1 July 2021 to 30 June 2026, https://media.powercor.com.au/wpcontent/uploads/2021/06/24183829/Final-Decision-CitiPower-distribution-determination-2021%E2%80%9326-Revised-Tariff-Structure-Statement-April-2021-Clean.pdf, Energy Networks Australia Opportunities for demand management and renewables https://www.energynetworks.com.au/projects/network-opportunity-maps/

Based on this we have made the following cost assumptions (table E.22). This covers the fixed cost of maintaining and augmenting all essential parts of a zone substation (i.e., low voltage feeder, low voltage transformer, high voltage feeder, zone substation, sub transmission feeder). As the cost of the augmentation is based on a 5-year regulatory period, we apply the annualised LRMC cost estimate for five years.

For example, a zone substation has a capacity of 40 MWA and a capacity gap of 20 MWA until 2036 (i.e., a 50 per cent capacity gap relative to the existing capacity):

- Total maintenance cost equals the new substation capacity multiplied by \$45/kVA/year, amounting to \$38 million, and
- total capacity augmentation cost is equal to \$11.2 million.<sup>139</sup>

Note, we model that capacity constraints are met by augmenting existing zone substations which is a simplification to meet the objective of this analysis. In reality, distributors might construct new zone substations in particular dense areas.

| E.22 | Cost for | distribution | network | augmentation | and | maintenance |
|------|----------|--------------|---------|--------------|-----|-------------|
|------|----------|--------------|---------|--------------|-----|-------------|

| Description                                  | Applied over time period | Cost         |
|----------------------------------------------|--------------------------|--------------|
|                                              |                          | \$/kVA/annum |
| Fixed maintenance rate                       | Every year               | 45           |
| Capacity augmentation (50 per cent increase) | 5 years                  | 112          |
| Source: CIE.                                 |                          |              |

<sup>139</sup> Cost Augmentation = \$224 \* 1000 (conversion MWA to kWA) \* 50% \* 20MWA \* 5 years = \$11.2 million

### Cost summary

The cost of providing additional electricity infrastructure is high under all scenarios (~ \$82 to \$91 billion), while the cost of installing new (mostly renewable energy) power capacity accounts for over \$42 billion until 2056 (tables E.23 and E.243.1):

- This would see the total installed power generation capacity to more than double by 2056 from 20 GW to over 59 GW, as well as
- a doubling of the current distribution network capacity from 9.6 GW to over 17 GW across all scenarios.

Overall, scenarios differ by  $\pm$  \$10 billion, while the Dispersed City and Network of Cities scenarios have the highest cost. Both scenarios need more widespread capacity augmentations across the whole of Victoria while the other scenarios see most of the augmentations either in Metropolitan Melbourne or Regional Victoria and not both. In particular, in Regional Victoria disproportional high growth leads to a higher augmentation need as the existing infrastructure is not sufficient.

|                                                  | Sc1             | L Sc2 Sc3             |                   | Sc4                  | Sc5                  |
|--------------------------------------------------|-----------------|-----------------------|-------------------|----------------------|----------------------|
|                                                  | Compact<br>City | Consolidat<br>ed City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                  | MW              | MW                    | MW                | MW                   | MW                   |
| Total Installed Capacity by 2056                 | 59 494          | 59 494                | 59 494            | 59 494               | 59 494               |
| Total Dispatchable Capacity by 2056              | 15 589          | 15 589                | 15 589            | 15 589               | 15 589               |
| Additional installed capacity (2056 vs. 2021)    | 39 050          | 39 050                | 39 050            | 39 050               | 39 050               |
|                                                  | MW              | MW                    | MW                | MW                   | MW                   |
| Total Maximum demand by 2056                     | 17 089          | 17 290                | 17 597            | 17 536               | 17 552               |
| Additional Maximum (Peak) Demand (2056 vs. 2021) | 8 185           | 8 386                 | 8 693             | 8 632                | 8 648                |

#### E.23 Electricity infrastructure across scenarios by 2056

Source: CIE Model, AEMO ISP (2022), 2022 Final ISP results workbook – Step Change, https://aemo.com.au/en/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp

#### E.24 Cumulative electricity infrastructure costs across scenarios by 2056

|                                                                             | Sc1             | Sc2                   | Sc3               | Sc4                  | Sc5                  |
|-----------------------------------------------------------------------------|-----------------|-----------------------|-------------------|----------------------|----------------------|
| Cumulative cost from 2021 to 2056                                           | Compact<br>City | Consolidat<br>ed City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                                             | \$b             | \$b                   | \$b               | \$b                  | \$b                  |
| Additional Power Generation and Transmissio                                 | n Network infr  | rastructure           |                   |                      |                      |
| Capital Cost – Power Generation                                             | 25.8            | 25.8                  | 25.8              | 25.8                 | 25.8                 |
| Capital Cost – Transmission Network                                         | 3.5             | 3.5                   | 3.5               | 3.5                  | 3.5                  |
| Operating and maintenance cost – Power<br>Generation & Transmission Network | 13.0            | 13.0                  | 13.0              | 13.0                 | 13.0                 |
| Sub-total                                                                   | 42.3            | 42.3                  | 42.3              | 42.3                 | 42.3                 |

|                                                | Sc1             | Sc2                   | Sc3               | Sc4                  | Sc5                  |
|------------------------------------------------|-----------------|-----------------------|-------------------|----------------------|----------------------|
| Cumulative cost from 2021 to 2056              | Compact<br>City | Consolidat<br>ed City | Dispersed<br>City | Network of<br>Cities | Distributed<br>State |
|                                                | \$b             | \$b                   | \$b               | \$b                  | \$b                  |
| Additional Distribution Network Infrastructure |                 |                       |                   |                      |                      |
| Capital Cost – Distribution Network            | 15.5            | 17.5                  | 23.4              | 23.6                 | 21.1                 |
| Operating Cost – Distribution Network          | 24.1            | 24.3                  | 24.7              | 24.6                 | 24.6                 |
| Sub-total                                      | 39.6            | 41.9                  | 48.1              | 48.1                 | 45.7                 |
| Total Additional Electricity Infrastructure    |                 |                       |                   |                      |                      |
| Capital Cost                                   | 44.8            | 46.9                  | 52.8              | 52.9                 | 50.4                 |
| Operating and maintenance cost                 | 37.1            | 37.3                  | 37.6              | 37.5                 | 37.6                 |
| Grand Total                                    | 81.9            | 84.2                  | 90.4              | 90.5                 | 88.0                 |

Source: CIE Model, AEMO ISP (2022), 2022 Final ISP results workbook – Step Change, https://aemo.com.au/en/energysystems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp

### Distributional impact

For the purpose of this analysis, we have assumed that the cost of electricity infrastructure is predominantly recovered through user charges. However, we note that some proportion might be funded by the State Electricity Commission in the future, while the extent is still unclear.<sup>140</sup>

### Additional information on AEMOs ISP — Step change scenario

This scenario involves a rapid transformation of the energy sector, with faster progress towards fulfilling Australia's net zero policy commitments and limiting global temperature rise to below 2°C compared to pre-industrial levels. The transition from fossil fuel to renewable energy is consistently fast paced, driven by a step change in global policy commitments and rapidly falling costs of energy production. Increased digitalisation helps with demand management and grid flexibility, and energy efficiency is as important as electrification. By 2050, most consumers rely on electricity for heating and transport, and internal-combustion vehicles have largely been phased out. There is also some domestic hydrogen production supporting the transport sector and blended pipeline gas, with some industrial applications after 2040.<sup>141</sup>

A summary of the key assumptions is shown below (chart E.25), however, we note that assumptions regarding the uptake of EV's have been drawn from the more recently

<sup>140</sup> https://www.vic.gov.au/state-electricity-commission-victoria

<sup>141</sup> https://aemo.com.au/-/media/files/major-publications/isp/2022/2022-documents/2022integrated-system-plan-

isp.pdf?la=en#:~:text=In%20the%20Step%20Change%20scenario,of%20the%20Eraring%20P ower%20Station., p.31

published AEMO Draft IASR (2023), which sees a 44 per cent uptake by 2036.<sup>142</sup> While we have adjusted the overall demand forecast, we have not adjusted the costs, since generation and transmission networks are not build at capacity but allow for excess capacity and cost would therefore unlikely be different.

| DEMAND                                                        | SI<br>Cha | ow<br>ange | Prog | uressive<br>ange |      | 5tep<br>nange | Hyo<br>Supe | 네 드<br>Irogen<br>erpower |
|---------------------------------------------------------------|-----------|------------|------|------------------|------|---------------|-------------|--------------------------|
| Electrification                                               | 2030      | 2050       | 2030 | 2050             | 2030 | 2050          | 2030        | 2050                     |
| - Road transport that is EV (%)                               | 2         | 36         | 5    | 84               | 12   | 99            | 18          | 94                       |
| - Residential EVs still relying on convenience charging (%)   | 82        | 58         | 75   | 44               | 70   | 31            | 66          | 22                       |
| - Industrial Electrification (TWh)                            | -24       | -21        | 4    | 92               | 27   | 54            | 37          | 64                       |
| - Residential Electrification (TWh)                           | 0         | 0          | 0.2  | 15               | 4    | 13            | 2           | 4                        |
| - Energy efficiency savings (TWh)                             | 8         | 19         | 14   | 40               | 22   | 55            | 22          | 56                       |
| Underlying Consumption                                        |           |            |      |                  | -    |               |             |                          |
| - NEM Underlying Consumption (TWh)                            | 163       | 213        | 201  | 394              | 222  | 336           | 243         | 330                      |
| - Hydrogen consumption - domestic (TWh)                       | 0         | 0          | 0    | 32               | 0.1  | 58            | 2           | 132                      |
| - Hydrogen consumption - export, incl. green steel (TWh)      | 0         | 0          | 0    | 0                | 0    | 0             | 49          | 816                      |
| - Total underlying consumption (TWh)                          | 163       | 213        | 201  | 425              | 223  | 394           | 294         | 1,278                    |
| SUPPLY                                                        |           |            |      |                  |      |               |             |                          |
| Distributed PV Generation (TWh)                               | 39        | 58         | 39   | 80               | 45   | 93            | 51          | 112                      |
| Household daily consumption potential stored in batteries (%) | 3         | 5          | 5    | 22               | 12   | 38            | 13          | 39                       |
| Underlying consumption met by DER (%)                         | 24        | 27         | 20   | 19               | 20   | 24            | 17          | 9                        |
| Coal generation (% of total electricity production)           | 32        | 5          | 38   | 2                | 21   | 0             | 6           | 0                        |
| NEM emissions (MT CO2-e)                                      | 53.3      | 13.0       | 77.2 | 22.4             | 48.1 | 6.8           | 20.6        | 6.6                      |
| 2020 NEM emissions (% of)                                     | 38        | 9          | 54   | 16               | 34   | 5             | 15          | 5                        |

#### E.25 AEMO ISP (2022) Scenario Input Assumptions

Data source: AEMO ISP (2022), https://aemo.com.au/-/media/files/major-publications/isp/2022/2022-documents/2022-integrated-system-plan-isp.pdf?la=en#:~:text=In%20the%20Step%20Change%20scenario,of%20the%20Eraring%20Power%20Station., p.31

The AEMO ISP includes a number of plans and recommendations for the development of renewable energy and transmission infrastructure in Victoria. Some key points include (map E.26):

- Solar Farms: The ISP identifies a number of areas in Victoria that are well-suited for the development of large-scale solar farms. These include the northwest and northeast regions of the state.
- Wind Farms: The ISP identifies several areas in Victoria that are well-suited for the development of wind farms, including the southwest and southeast regions of the state.
- Transmission Infrastructure: The ISP recommends the development of several new transmission projects in Victoria to support the growth of renewable energy generation. These include the Western Victoria Transmission Network Project, which involves the construction of new transmission lines to support the connection of new wind and solar farms in the region, as well as the Renewable Energy Zone in the southwest region of the state.
- Energy Storage: The ISP identifies the need for increased energy storage capacity in Victoria to support the integration of renewable energy sources. This includes both shallow storage, such as batteries and pumped hydro, as well as deep storage technologies such as hydrogen, ammonia and other fuel-based systems.

<sup>142</sup> AEMO Draft IASR (2023), Detailed Electric Vehicle Workbook - Draft 2023 IASR – Orchestrated Change, https://aemo.com.au/consultations/current-and-closedconsultations/2023-inputs-assumptions-and-scenarios-consultation

 Gas-Fired Generation: The ISP acknowledges that gas-fired generation will continue to play a role in Victoria's electricity system over the next few decades, but recommends that the use of gas be gradually phased out in favour of cleaner energy sources.



E.26 Network and indicative generation projects in the optimal development path

Data source: AEMO 2022 Integrated System Plan (ISP) https://aemo.com.au/-/media/files/major-publications/isp/2022/2022-documents/2022-isp-infographic.pdf?la=en

#### ISP Cost estimation methodology

The ISP approach to estimating the total cost of generation and transmission until 2050 involves several steps:

- 1 First, AEMO develops a set of scenarios that consider different assumptions about the future evolution of the electricity market, including changes in technology, policy, and consumer behaviour.
- 2 Second, AEMO models the electricity system under each scenario using a suite of energy and economic models to estimate the necessary investments in generation and transmission infrastructure to meet future demand.
- 3 Finally, AEMO estimates the total cost of these investments, including capital costs, operating costs, and financing costs, over the planning horizon.

# F Gas networks

- Please note that this analysis was undertake prior to Victoria Government announcement that all new home and subdivisions will only be connected to electric networks for energy.<sup>143</sup>
- The role of natural gas in Victoria will decline due to the de-carbonisation and electrification of the economy but will still play a role in the coming decades.
- While residential properties do not have to be connected to natural gas anymore it is unclear how high the adoption of gas will be in the future, however AEMO has prepared forecast, which determines how high the additional augmentation cost will be.
  - In general, total natural gas consumption and maximum demand are expected to decline over the decades making capacity constraints and additional largescale infrastructure investments unlikely.
- Until 2056, the total cost under the central case is estimated to be around \$12 billion. This includes capital for replacements and some services growth in Greenfield areas.

| Additional |     |         | 2036 |      |         | 2056 |
|------------|-----|---------|------|------|---------|------|
|            | low | central | high | low  | central | high |
|            | \$b | \$b     | \$b  | \$b  | \$b     | \$b  |
| CAPEX      | 3.3 | 3.5     | 3.6  | 6.1  | 6.5     | 6.9  |
| OPEX       | 2.7 | 2.8     | 2.9  | 4.9  | 5.3     | 5.7  |
| Total      | 6.0 | 6.2     | 6.5  | 11.0 | 11.8    | 12.6 |

#### F.1 Natural Gas infrastructure impacts

Source: CIE.

# The future of gas in Victoria

The future of natural gas infrastructure in Victoria is a topic of great importance and interest, as the state seeks to transition towards a more sustainable and reliable energy system.

<sup>143</sup> https://www.premier.vic.gov.au/new-victorian-homes-go-all-electric-2024

Infrastructure Victoria has undertaken a state-wide analysis of the implications of the energy transition for Victoria's extensive gas infrastructure assets.<sup>144</sup> The analysis provides advice and makes 11 recommendations to the Victorian Government, underpinned by extensive research, modelling and stakeholder input. The advice report informed the Victorian Government's Gas Substitution Roadmap, a policy framework that charts the strategic pathway for transitioning away from traditional natural gas usage:<sup>145</sup>

- A strategic plan for transitioning away from traditional natural gas towards lowcarbon energy sources such as renewables, hydrogen and biogas.
- An emphasis of the importance of energy efficiency measures, promoting the use of energy-efficient appliances and systems to reduce overall energy consumption.
- A focus on strategic infrastructure planning and investment to support the transition, ensuring reliable supply and optimising existing infrastructure for new energy sources.

The Australian Energy Market Operator (AEMO) has recently published its Gas Statement of Opportunities (GSOO) report, which outlines the expected demand and supply of gas in the over the next 20 years.<sup>146</sup> The report indicates that natural gas demand in Victoria is expected to decline over time due to a range of factors, including increasing renewable energy generation and energy efficiency measures. Under the Orchestrated Step Change (1.8°C), current natural gas consumption will decrease from over 200 PJ today to less than 125 PJ by 2042.<sup>147</sup> This means natural gas will still play a role in the coming decades.

In response to this changing landscape, the Victorian government has developed a Gas Substitution Roadmap, which outlines a range of initiatives aimed at reducing natural gas consumption and increasing the use of alternative energy sources. The roadmap sets ambitious targets for the reduction of greenhouse gas emissions and the implementation of new technologies such as hydrogen and biogas.

The Victorian Gas Substitution Roadmap outlines steps to phase out natural gas over the coming decades. New homes requiring a planning permit will be required to be all-electric from 1 January 2024 and no longer connected to the gas network.<sup>148</sup> In addition,

opportunities.pdf?la=en

<sup>144</sup> Infrastructure Victoria (2021), *Towards 2050: Gas infrastructure in a zero emissions economy* https://www.infrastructurevictoria.com.au/project/infrastructure-victoria-advice-on-gasinfrastructure/#about

<sup>145</sup> Victorian Government (2023), *Victoria's Gas Substitution Roadmap*, https://www.energy.vic.gov.au/renewable-energy/victorias-gas-substitution-roadmap

<sup>146</sup> AEMO (2023), Gas Statement of Opportunities March 2023 For central and eastern Australia, https://aemo.com.au/-/media/files/gas/national\_planning\_and\_forecasting/gsoo/2023/2023-gas-statement-of-

<sup>147</sup> http://forecasting.aemo.com.au/Gas/AnnualConsumption/Total

<sup>148</sup> https://www.energy.vic.gov.au/renewable-energy/victorias-gas-substitutionroadmap#:~:text=From%201%20January%202024%2C%20planning,and%20infill%20sites%2 0across%20Victoria.

moving away from fossil fuels to renewable energy (electrification), all-electric developments and improved energy standards will be incentivised.<sup>149</sup>

Natural gas will, therefore, no longer be servicing new greenfield or infill developments. Thus, natural gas supply networks and developments will be dealt with an as needs basis with Australian Gas Networks, Multinet Gas, and AusNet Services, the natural gas distribution network provider in Victoria.

Against this backdrop, the Victorian natural gas distributors have recently published their Revised Final Plan 2023-28, which outlines the revised and reduced proposed infrastructure investments and associated costs over the next five years.<sup>150</sup> <sup>151</sup> <sup>152</sup>

### Approach to estimate additional gas infrastructure

In the coming decades natural gas consumptions is declining due to decarbonisation and electrification of the economy (chart F.2).



#### F.2 Natural gas consumption and maximum daily demand (2056)

Note: AEMO GSOO forecast available only until 2042. For the remainder period we have applied a linear trend based on the years 2032 to 2042.

Data source: CIE, AEMO GSOO (2023) - Orchestrated Step Change Scenario.

#### 149 Victoria Government (2022), Gas Substitution Roadmap,

https://www.energy.vic.gov.au/renewable-energy/victorias-gas-substitutionroadmap#heading-1, pp 24

- 150 https://www.aer.gov.au/networks-pipelines/determinations-accessarrangements/multinet-gas-access-arrangement-2023%E2%80%9328
- 151 https://www.aer.gov.au/networks-pipelines/determinations-access-arrangements/ausnetservices-access-arrangement-2023%E2%80%9328
- 152 https://www.aer.gov.au/networks-pipelines/determinations-accessarrangements/australian-gas-networks-victoria-and-albury-access-arrangement-2023%E2%80%9328

Since consumption and maximum demand are declining over the coming years, capacity constraints in the distribution network are unlikely. This means large augmentation investments are not to be expected. For example, according to AusNet Services, only 13 per cent of the total expected capital expenditure in the next 5 years will go towards asset augmentation, while the majority of capital is spent on replacements and services growth (while the total number of connections is declining, there are still new connections added in the coming years).<sup>153</sup>

We have, therefore, taken a pragmatical approach to estimate total cost. Total costs are estimated based on the most recent AER submissions from the three distributors and APA (who owns and maintains the Victorian Transmission System) (table F.3) and linearly reduced in accordance with the gas consumption demand in Victoria.

We assume:

- Overall natural gas consumption and in turn additional augmentation does not differ significantly by scenario as capacity constraints are not to be expected.
- New industrial and commercial users who require natural gas in their production will be located near existing natural gas infrastructure, which requires minimal additional assets.
  - While some growth scenarios expect a larger traditional industry (scenario 3), this additional demand can be met by the existing infrastructure or is already captured within the electrification cost.
- Growth scenarios will not differ in terms of residential natural gas demand and the overall trend follows the AEMO forecasts.
- Decommissioning of existing assets and in turn the cost of maintaining, replacing, and augmenting the system will follow the trend growth of AEMO's forecast and is the same across scenarios.
  - Note that there is also a potential alternative that would involve repurposing existing gas networks for low-emission gases, such as biogas or hydrogen.
    However, due to the uncertainty surrounding this pathway and its lack of clarity at present, we have not included this alternative in our costing analysis.

| Measure           | 2023/24   | 2024/25   | 2025/26   | 2026/27   | 2027/28   |
|-------------------|-----------|-----------|-----------|-----------|-----------|
|                   | No.       | No.       | No.       | No.       | No.       |
| Total Connections | 2 251 354 | 2 248 449 | 2 228 881 | 2 196 205 | 2 151 307 |
|                   | \$m, 2023 |
| CAPEX             | 485       | 407       | 340       | 321       | 312       |
| OPEX              | 287       | 289       | 284       | 282       | 280       |
| Total Cost        | 772       | 696       | 624       | 604       | 592       |

#### F.3 Natural gas infrastructure cost forecast

153 AER – AGN 2023-28 – Draft Decision – Capex Model - Attachment 9.3A - 25/10/22 version, Revisions to Capex Forecast Model, Response to Victorian Gas Substitution Roadmap, https://www.aer.gov.au/networks-pipelines/determinations-accessarrangements/ausnet-services-access-arrangement-2023%E2%80%9328 Note: Capex is 'Net Capital Expenditure (direct costs, real cost escalation and overheads, \$2022/23)' and Opex refers to 'Total forecast opex, excluding category specific forecasts.'

Source: AER - AGN 2023-28 - Draft Decision - Capex & Opex model - December 2022, AER - MGN 2023-28 - Draft Decision - Capex & Opex model - December 2022, ASG - GAAR 202 4-28 Capex & Opex Model - 24 Jan 2023 – PUBLIC., AER - Final Decision - APA VTS 2023-27 Capex & Opex Model - December 2022 – Public.

### Cost summary

We model the cost of providing additional natural gas distribution infrastructure through managing demand and existing capacity at a state level. We have estimated a low and high cost, while the central results reflect the average of both:

- The high-cost estimate assumes that the capital expenditure spending pattern remains the same and CAPEX is only declining in line with the consumption forecast, and
- The low-cost estimate assumes that there will be no additional capital expenditure in 'growth assets' after 2030.

Total cost across all scenarios ranges from \$6.7 to \$7.2 billion by 2036 and \$12.4 to \$14.0 billion by 2056 (table F.4). We note that this is a very high-level estimate based on the assumption that capital and operating expenditure are directly linked to natural gas consumption.

| Additional |     |         | 2036 |      |         | 2056 |
|------------|-----|---------|------|------|---------|------|
|            | low | central | high | low  | central | high |
|            | \$b | \$b     | \$b  | \$b  | \$b     | \$b  |
| CAPEX      | 3.7 | 3.8     | 3.9  | 6.7  | 7.1     | 7.5  |
| OPEX       | 3.1 | 3.2     | 3.3  | 5.7  | 6.1     | 6.5  |
| Total      | 6.7 | 7.0     | 7.2  | 12.4 | 13.2    | 14.0 |

#### F.4 Natural gas infrastructure impacts across scenarios

Source: CIE.

### Distributional impact

For the purpose of this analysis, we have assumed that the cost of natural gas infrastructure is predominantly recovered through user charges.

## G Water and wastewater

- There are 15 urban water corporations which provide water and wastewater services to residential and non-residential customers in cities and regional towns throughout Victoria.
- Across Victoria there is currently limited capacity in the water supply and wastewater treatment, as well as the distribution networks, to meet future growth beyond a 5 to 10 year horizon. Additional investments will, therefore, be required to support the future population and employment growth from 2023 onward. Climate change will also place further pressure on the water security which will also bring forward the need for new sources of supply to manage water security risks. Different solutions are required in the different locations, depending on the local circumstance.
- The level and cost of new investments will vary by water corporation. This, in part, reflects the higher water use per property in regional Victoria due to hotter and drier conditions. The costs differences will also reflect the different options available to manage water security and wastewater services. In coastal regions, for example, desalinated sea water is expected to be one viable option. New dams are unlikely to be viable due, in part, to future climate risk. Other solutions beyond these traditional approaches will be required, including recycled water will be required. Similarly, wastewater transport/treatment costs are expected to be higher in regional areas due to the higher levels of treatment required for discharge to inland waterways. Network upgrades to meet growth varies by corporation, although in aggregate the scenarios 4 and 5 have higher network costs.
- The precise solutions are expected to differ in different locations throughout Victoria depending on the unique options available. In some cases, for example, there may be scope to purchase water entitlements currently being used for low value agricultural use. Although these options are unlikely to be sufficient to meet the capacity required where the scenario results in a substantial increase in population/employment in that region.
- The analysis conducted for this report should, therefore, be interpreted as providing high level guidance on the costs of service provision under each option.

### Overview of water and wastewater services

As an essential service, all new dwellings constructed in urban areas are connected to the water and wastewater networks. The cost of connection and augmentation are typically divided between the developers and the service provider. Infrastructure costs for mains and treatment facilities (sewage and water) are predominantly met by the utilities in their area of operations with the costs recovered from customers. The costs of connection to the trunk infrastructure are typically funded by developers. The costs associated with managing stormwater are typically the responsibility of local councils, although there are some stormwater assets that are managed by the catchment management authorities. This chapter focuses on the water and wastewater costs.

The cost of utility infrastructure arising out of alternative growth paths will reflect the extent of capacity in existing areas, the economic viability of accessing this excess capacity and the costs of upgrades to meet the new demand. Upgrades will also need to meet existing standards imposed such as the Australian Drinking Water Guidelines and the EPA licences for discharges to the environment from wastewater treatment plants and overflow events from the network.

Over the past few years, there has also been an increased focus on supply resilience to manage future climate change risks (irrespective of any population increases), as well as, network resilience to manage events such as outages or water quality incidents in different parts of the network. There is also significant expenditure on meeting higher standards, particularly related to discharge to the environment.

#### Water and wastewater service providers

There are three types of water corporations in Victoria

- Urban (metropolitan): Melbourne is served by three water corporations<sup>154</sup> and a wholesaler, Melbourne Water which also manages the two main wastewater treatment facilities.
- Urban (regional): 12 water corporations provide water and sewerage services in regional cities and towns across the state.
- Rural water: 4 water corporations provide rural water services across Victoria for irrigation, stock and domestic, environmental and recreational purposes.

Chart G.3 presents a map of the urban water corporations throughout Victoria. These are the focus of our analysis, as well as Melbourne Water, which supports the three corporations servicing the wider Melbourne area.

<sup>154</sup> The 3 retailers servicing the greater Melbourne area include Greater Western Water, South East Water, Yarra Valley Water. In July 2021 there was a restructure of retailers. Greater Western Water was previously two separate retailers Western Water and City West Water). https://www.melbournewater.com.au/services/water-retail-companies



#### G.3 Victorian urban water corporations

Data source: https://datashare.maps.vic.gov.au/

### Urban customers serviced

Over time there has been an increase in the number of customers serviced and volume of water provided. In 2021-22 there were 2.9m properties connected to water supply services in Victoria. Around 92% of properties connected to the water supply system are defined as 'residential' properties. 77% of the properties were located in the Melbourne metropolitan area, 12% in the coastal regions and 11% in the inland regions served by the corporations.


G.4 Number of residential and non-residential properties connected to water supply

Data source: BOM National Performance Report 2021-22, http://www.bom.gov.au/water/npr/

Chart G.5 presents the average volume of water supplied to residential and nonresidential customers over the past 5 years. Around 70% of the water is supplied by the three Melbourne corporations, with around 14% supplied by the corporations on the coastal areas and 16% by the inland corporations.

| Corporation                                    | Category        | Total    | Share |
|------------------------------------------------|-----------------|----------|-------|
|                                                | ML/annum        | ML/annum | %     |
| Greater Western Water                          | Metropolitan    | 116,124  | 19.8  |
| South East Water Corporation                   | Metropolitan    | 141,709  | 24.1  |
| Yarra Valley Water Corporation                 | Metropolitan    | 144,050  | 24.5  |
| Wannon Water                                   | Regional coast  | 11,631   | 2.0   |
| Westernport Water Corporation                  | Regional coast  | 2,147    | 0.4   |
| Barwon Region Water Corporation                | Regional coast  | 34,358   | 5.9   |
| East Gippsland Region Water Corporation        | Regional coast  | 4,790    | 0.8   |
| Central Gippsland Region Water Corporation     | Regional coast  | 24,343   | 4.1   |
| South Gippsland Region Water Corporation       | Regional coast  | 4,656    | 0.8   |
| Lower Murray Urban and Rural Water Corporation | Regional Inland | 19,616   | 3.3   |
| Grampians Wimmera Mallee Water Corporation     | Regional Inland | 9,503    | 1.6   |
| Coliban Region Water Corporation               | Regional Inland | 20,537   | 3.5   |
| Central Highlands Water                        | Regional Inland | 14,462   | 2.5   |
| Goulburn Valley Region Water Corporation       | Regional Inland | 24,790   | 4.2   |
| North East Region Water Corporation            | Regional Inland | 14,524   | 2.5   |
| Total                                          |                 | 587,240  | 100.0 |

#### G.5 Total volume of water supplied, average 2017/18 to 2021/22

Source: Data source: BOM National Performance Report 2021-22, http://www.bom.gov.au/water/npr/

In the metropolitan Melbourne utilities between 65 to 80% of the water is supplied to residential properties. The regional corporations supply a lower share of water to

residential customers - between 45 to 72% for coastal corporations and 57 to 71% for the inland corporations.



Share of water supplied to residential properties, average 2017/18 to 2021/22 **G.6** 

Residential properties located in inland regional areas consume, on average, around 230kl/property over the past 10 years, although this does range between the corporations (the highest being around 500kl/property in Lower Murray Water and 150kl/property in Central Highlands Water). This compares to closer 150kl/property in metropolitan Melbourne and 140kl/property for coastal regions. This is likely to reflect the hotter drier conditions that prevail in inland areas, as well as different mix of dwelling types and size. Water demand by single dwellings is more seasonal and responsive to weather than demand by units and flats due to factors, such as the presence of garden areas and swimming pools.



Average volume of residential water supplied per property G.7

Data source: BOM National Performance Report 2021-22, http://www.bom.gov.au/water/npr/

Source: Data source: BOM National Performance Report 2021-22, http://www.bom.gov.au/water/npr/

#### **Future Scenarios**

The spatial location of future growth can have a bearing on the water and wastewater infrastructure costs required to service the growth. IV's growth scenarios are prepared at an SA2 geographical level. We have allocated each SA2 in Victoria to the relevant corporation.<sup>155</sup> In some cases the corporations' service areas do not perfectly align with the SA2 boundaries. In these cases we have calculated the SA2 area within each corporation and allocated the population to the corporation based on the area (sqkm) of the SA2 within each corporations boundaries.

The charts below present the 2021 population in the relevant corporation and the 2056 population under each scenario. Scenario 0 aligns with the *Victoria In the Future* 2019 population forecasts.<sup>156</sup> The corporations are categorized as those servicing the Melbourne area, coastal regions outside Melbourne and inland regions.

- the Melbourne corporations serviced a population of around 5.1m in 2021, increasing by between 67% (in scenario 2) to 44% (in scenario 5) by 2056.
- the coastal corporations serviced a population of around 1.1m in 2021, increasing by between 125% (in scenario 5) to 48% (in scenario 2) by 2056.
- the inland corporations serviced a population of around 0.47m in 2021, increasing by between 78% (in scenario 5) to 12% (in scenario 2) by 2056.



#### G.8 2056 population serviced by corporations in the Melbourne area

Data source: The CIE allocation based on IV scenario data.

156

<sup>&</sup>lt;sup>155</sup> Note that the SA2 boundaries may not perfectly align to each corporation's sewer subcatchment and water distribution zone covering the area serviced.

https://www.planning.vic.gov.au/\_\_data/assets/pdf\_file/0032/332996/Victoria\_in\_Futur e\_2019.pdf



#### G.9 2056 population serviced by corporations in the coastal areas outside Melbourne

Data source: The CIE allocation based on IV scenario data.



#### G.10 2056 population serviced by corporations in the inland areas outside Melbourne

Data source: CIE allocation based on IV scenario data.

#### Employment growth

The scenarios also have different assumptions regarding growth in the number of jobs by the service area for the corporation. In aggregate across the whole of Victoria the scenario results in a 60% increase in the number of jobs, although the increase varies between the corporations, with the smallest growth in the metropolitan Melbourne area.

| Corporation                       | 2021        | Sc_0_2056   | Change |
|-----------------------------------|-------------|-------------|--------|
|                                   | jobs ('000) | jobs ('000) | %      |
| Greater Western Water             | 962         | 1,366       | 42%    |
| South East Water                  | 931         | 1,243       | 33%    |
| Yarra Valley Water                | 844         | 1,320       | 56%    |
| Wannon Water                      | 43          | 77          | 77%    |
| Westernport Water                 | 8           | 34          | 309%   |
| Barwon Water                      | 161         | 455         | 182%   |
| East Gippsland Water              | 19          | 50          | 166%   |
| Gippsland Water                   | 61          | 138         | 124%   |
| South Gippsland Water             | 19          | 49          | 158%   |
| Lower Murray Water                | 28          | 49          | 78%    |
| Grampians Wimmera<br>Mallee Water | 32          | 51          | 59%    |
| Coliban Water                     | 78          | 170         | 117%   |
| Central Highlands Water           | 71          | 150         | 111%   |
| Goulburn Valley Water             | 72          | 141         | 97%    |
| North East Water                  | 58          | 118         | 104%   |
| Total                             | 3 387       | 5 410       | 60%    |

#### G.11 Jobs growth 2021 to 2056 (Scenario 0)

Source: CIE allocation based on IV scenario data.

Chart G.12 illustrates the change in the number of jobs in the different corporations' service area under the different scenarios. Under scenario 5, for example, there are around 0.6m less jobs in the metropolitan Melbourne corporations. Around 0.33m of these jobs are instead allocated to the coastal corporations and 0.27m to the inland regions.

#### G.12 Change in job numbers relative to Scenario 0, 2056



Source: CIE allocation based on IV scenario data.

#### Dwelling structure

Table G.13 illustrates the changing structure that is forecast in each corporation's region by 2056. The base case scenario demonstrates a substantial reduction in separate houses in the metropolitan Melbourne areas, compared to 2021. The share is more stable in the areas outside metropolitan Melbourne.

| Corporation                    | 2021 | Sc0_2056 | Change in share |
|--------------------------------|------|----------|-----------------|
|                                | %    | %        | %               |
| Greater Western Water          | 59%  | 51%      | -9%             |
| South East Water               | 65%  | 50%      | -15%            |
| Yarra Valley Water             | 70%  | 50%      | -20%            |
| Wannon Water                   | 90%  | 89%      | -1%             |
| Westernport Water              | 90%  | 89%      | -1%             |
| Barwon Water                   | 87%  | 81%      | -6%             |
| East Gippsland Water           | 89%  | 89%      | -1%             |
| Gippsland Water                | 89%  | 88%      | -1%             |
| South Gippsland Water          | 95%  | 94%      | -1%             |
| Lower Murray Water             | 84%  | 79%      | -5%             |
| Grampians Wimmera Mallee Water | 91%  | 91%      | -1%             |
| Coliban Water                  | 92%  | 85%      | -6%             |
| Central Highlands Water        | 88%  | 83%      | -5%             |
| Goulburn Valley Water          | 90%  | 90%      | -1%             |
| North East Water               | 89%  | 89%      | 0%              |

G.13 Separate houses as a share of all properties service by corporation

Source: CIE analysis based of IV scenario data.

Chart G.14 illustrates the change in separate houses in 2056 compared to Scenario 0. For example, in the metropolitan Melbourne area in Scenario 3 the share of separate houses is around 5% higher compared to Scenario 0. Barwon Water, Coliban Water and Central Highlands Water also experience is larger changes in the shares, compared to the Scenario 0.



G.14 Change in share of separate houses, compared to Scenario 0 in 2056

Source: CIE analysis based of IV scenario data.

## *Cost implications of scenarios – supply augmentation and wastewater treatment*

In aggregate across the whole of Victoria, the population is forecast to increase by around 1.6 times the 2021 levels, reaching around 10.7m by 2056. The distribution of the future population throughout Victoria can have different cost implications:

- There may be 'excess capacity' in different parts of the system.
- Upgrades to manage future wastewater collected will vary by region:
  - For inland regions that are required to discharge to inland waterways, a higher level of treatment is typically required to meet EPA requirements for discharge to the inland rivers. In these regions investing in wastewater recycling plants is expected could be a viable option to manage both wastewater and providing additional water supply.
  - Discharge via ocean outfalls is likely to be cheaper (on a per ML basis) because it typically requires a lower level of treatment compared to discharging to inland waterways.
- In terms of upgrades to meet future water supply needs,
  - coastal locations have greater potential to rely on new desalination investments. Inland areas away from the coast have historically relied on dams, although these investments are considered unviable in many situations.<sup>157</sup> Other options, therefore, need to be considered including recycled water investments and purchasing water entitlements via the open trading market. The continued expansion of the Water Grid would also assist the ability to transfer water between different parts of the regions.

<sup>157</sup> This reflects the lack of suitable sites and the community opposition to new dams.

- climatic variability in the short term can be a driver of investment. That is, while there may be sufficient water to meet growing demand, it is short term water shortages that trigger the need for early investments (irrespective of population growth rates).
- over the longer term, 'climate change' is expected to lead to longer periods of hotter/drier conditions, posing a greater risk to supply shortages. In this context, building new dams is unlikely to be a viable option because suitable dam sites have been exhausted and the lower expected future rainfall increase the average time to refill dams. Given this, there is an increased focus on manufactured water (i.e. desalination and recycled water facilities) to manage climate risks. This will also have a differential impact in inland and coastal areas.

#### Water Supply

The Victorian Government has developed three different Sustainable Water Supply strategies:

- Central and Gippsland Region 2022. The Central and Gippsland Region covers the waterways and catchments south of the Great Divide down to the coast from the Otways to Mallacoota.
- Northern Region 2009. The Northern Region includes Victoria's share of the River Murray and the major Victorian tributaries that flow north into it. Major urban centres in the region include Wodonga, Wangaratta, Benalla, Shepparton, Bendigo, Swan Hill and Mildura.
- Western Region 2011. The Western region covers around one-third of Victoria from Colac and Lorne in the south-east to Ouyen in the north-west. Its agricultural and urban centres include Colac, Port Campbell, Horsham, Stawell, Ararat, Hamilton, Warrnambool and Portland.

The Sustainable Water Supply strategies provide a high level review of the water resources in the regions. More recently, each of the urban water corporations has developed an Urban Water Strategy (UWS) which are the

... key planning tool to deliver water security for cities and towns. They identify the best mix of actions to provide secure water and sewerage services over the next 50 years.<sup>158</sup>

#### Overview of approach to estimate water supply costs

For the purpose of our analysis we have utilised the UWS for the corporations as the starting point for developing the cost estimates of the alternative scenarios. The following approach has been undertaken:<sup>159</sup>

• **Step 1.** Develop forecast water demand and volume of wastewater to be discharged to treatment plants. The UWS present demand forecasts based on the *Victoria In the* 

<sup>158</sup> https://www.water.vic.gov.au/vic-water-supply

<sup>&</sup>lt;sup>159</sup> It is important to note that the approach adopted is intended to generate costings that provide a reasonable 'order of magnitude', rather than the precision that would be required undertaken by each corporation when developing their future cost estimates.

*Future* 2019 population forecasts which aligns to Scenario 0. In the UWS documents the demand forecasts are presented as a (wide) range which include an upper-bound (high demand, high climate change), as well as, a mid-demand (medium demand, medium climate change). Detailed spreadsheets of the forecasts were not available to us and the forecasts have also only been developed for a single scenario (based on the VIF). Therefore, we have developed an alternative approach which can be applied across scenarios for each corporation.<sup>160</sup>

#### - Residential demand.

- ··· As a starting point, we have adopted the average *residential* demand over the past 5 years.
- For each corporation, we have 'scaled' this starting point demand in proportion to the population change for each scenario (in 2036 and 2056). A linear growth path between 2023 to 2036 and 2036 to 2056 has been adopted. No explicit adjustment has been made for 'climate change'.
- For the 3 corporations in Melbourne we assume that the 150lcd target is achieved by 2036 and further declining to 140lcd by 2056. For the other corporations we adopt a 181 lcd target for scenarios 0, 1, 2 and 3. For scenarios 4 and 5 we assume that a 150lcd would be required to be able to meet the substantial additional demand in the regions.<sup>161</sup>
- Adjustments have also been made for the change in dwelling structure. Some studies suggest that houses consume 1.38 times more than units/flats.<sup>162</sup>
  Melbourne Water has indicated that an existing house has an annual average day of 618Lday and 490L /day for new homes and 382L/day for new units. For Bendigo in 2021/22, the average house used 206.5kL and average flat used 108kL (around 2 times) but the flats are typically smaller. We, therefore, assume that new houses in Melbourne (and coastal areas) consume 1.28 times more than new units/flats. For inland areas, we assume new houses consume 1.9 times more than new units/flats.

#### - Non-residential demand.

- ··· As a starting point, we have adopted the average *non-residential* demand over the past 5 years.
- For each corporation, we have 'scaled' this starting point demand in proportion to the change in the number of jobs for each scenario (in 2036 and 2056). A linear growth path between 2023 to 2036 and 2036 to 2056 has been adopted.

<sup>160</sup> We have sought to cross-check figures against the UWS for each corporation. For example, we estimate around 58GL of total water us by 2056 for Barwon Water which compares to 55GL on p.34 of their UWS (based on a visual check of the chart). However, the supply forecasts in the UWS documents for many corporations are reported at an individual 'system' level rather than an aggregate across the corporation.

<sup>161</sup> We have not applied any water efficiency targets for the Lower Murray Water, given that its residential usage per capita is significantly higher than all other areas and it is not clear whether achieving the target is feasible.

<sup>&</sup>lt;sup>162</sup> This is based on an IPART study which estimated that a typical house uses 220kl/year compared to 160kl/year for a typical apartment.

- No adjustments have been made for changes in the composition of different types of businesses, given the limited data available to develop future forecasts based on changing sectoral composition in the different regions in the different parts of Victoria.
- Step 2. Based on discussions with Melbourne Water and Coliban Water we assume that the supply system is currently at full capacity. Therefore, any increase in demand will need to be serviced by additional investments.
- **Step 3**. Apply unit costs. We utilise the levelized cost data presented in a 2020 study by the Water Services Association of Australia (see chart G.15). The levelized cost reflects both the capital and ongoing operating costs.
  - for regional coastal and inland corporations we assume that recycled water investments are required to manage future wastewater supply. We assume that the recycled water is used to supply new non-residential demand.<sup>163</sup>
  - in order to meet the additional residential demand<sup>164</sup>
    - ••• for the metropolitan Melbourne and coastal corporations we assume that the new supply is met via new desalination facilities.
    - for the inland corporations there are a range of options available. In the price submissions to the ESC a range of options including purchasing low reliability entitlements, accessing groundwater and stormwater recapture are considered.<sup>165</sup> These options vary between different parts of the corporations' networks. Given that the precise solutions are not well identified, we assume a purchasing entitlements, groundwater investments and stormwater capture are the options available and that corporations adopt these in equal share.<sup>166</sup>

<sup>163</sup> The volume of wastewater to be recycled exceeds the new non-residential demand. Any excess recycled water is assumed to be treated to the same recycled water standard and discharged to the environment.

<sup>&</sup>lt;sup>164</sup> This is the residential demand once the targets are (water efficiency investments costs are required to meet these targets).

<sup>165</sup> https://www.esc.vic.gov.au/water/water-prices-tariffs-and-special-drainage/water-price-reviews/water-price-review-2023

<sup>166</sup> A levelized cost from the WSAA study is available for 'groundwater' and 'stormwater small-scale'. We also assume a price of \$3,000/ML to purchase low reliability entitlements (see http://www.bom.gov.au/water/market/documents/The\_Australian\_Water\_Markets\_Report \_2020-21.pdf, p.50).



G.15 Costs of water supply option, levelized cost \$/kL (2019-20)

Based on these assumptions, tables G.16 and G.17 present the volume of water demanded for the different scenarios as at 2056.



Sc0\_2056 Sc1\_2056 Sc2\_2056 Sc3\_2056 Sc4\_2056 Sc5\_2056

G.16 Estimated volume for each Water Corporation of Residential Water in 2056 by

Data source: The CIE estimate based on IV scenario data.

Greater Western Water

Data source: WSAA (2020), Urban Water Supply Options for Australia, p.3.



G.17 Estimated volume of Non-Residential Water in 2056

Data source: The CIE estimate based on IV scenario data.

Table G.18 and G.19 presents the estimated additional water supply cost in 2036 and 2056 to meet the additional water demand under the different scenarios. Grampians Wimmera Mallee Water has limited population growth forecast, hence there is no cost increases. Similarly for Wannon Water and Central Gippsland Water future population growth in limited.

| Cost                              | <b>S</b> 0 | <b>S1</b> | S2        | <b>S</b> 3 | S4        | <b>S</b> 5 |
|-----------------------------------|------------|-----------|-----------|------------|-----------|------------|
|                                   | \$m, real  | \$m, real | \$m, real | \$m, real  | \$m, real | \$m, real  |
| Greater Western Water             | 786        | 809       | 768       | 810        | 659       | 630        |
| South East Water                  | 515        | 524       | 515       | 510        | 392       | 367        |
| Yarra Valley Water                | 423        | 444       | 442       | 350        | 290       | 268        |
| Wannon Water                      | 3          | -         | 3         | 3          | 9         | 21         |
| Westernport Water                 | 10         | 9         | 10        | 12         | 12        | 25         |
| Barwon Region Water               | 147        | 123       | 147       | 219        | 283       | 274        |
| East Gippsland Region Water       | 11         | 7         | 11        | 11         | 14        | 28         |
| Central Gippsland Region Water    | -          | -         | -         | -          | -         | 32         |
| South Gippsland Region Water      | 8          | 6         | 8         | 9          | 10        | 15         |
| Lower Murray Urban Water          | 32         | 14        | 32        | 32         | 61        | 103        |
| Grampians Wimmera Mallee<br>Water | -          | -         | -         | -          | -         | -          |
| Coliban Region Water              | 25         | 3         | 24        | 30         | 131       | 96         |
| Central Highlands Water           | 120        | 101       | 119       | 123        | 235       | 177        |
| Goulburn Valley Region Water      | 50         | 17        | 48        | 71         | 65        | 89         |
| North East Region Water           | 10         | -         | 9         | 10         | 27        | 63         |
| Total                             | 2 142      | 2 057     | 2 136     | 2 191      | 2 189     | 2 189      |

#### G.18 Additional water supply cost to 2036

Source: CIE estimate.

| Cost                              | <b>S</b> 0 | <b>S1</b> | S2        | <b>S</b> 3 | <b>S</b> 4 | <b>S</b> 5 |
|-----------------------------------|------------|-----------|-----------|------------|------------|------------|
|                                   | \$m, real  | \$m, real | \$m, real | \$m, real  | \$m, real  | \$m, real  |
| Greater Western Water             | 4 191      | 4 345     | 4 033     | 4 368      | 3 482      | 3 275      |
| South East Water                  | 2 871      | 2 903     | 2 849     | 2 803      | 2 164      | 1 925      |
| Yarra Valley Water                | 2 813      | 2 940     | 2 993     | 2 361      | 1974       | 1677       |
| Wannon Water                      | 17         | -         | 17        | 17         | 45         | 128        |
| Westernport Water                 | 56         | 48        | 56        | 68         | 64         | 177        |
| Barwon Region Water               | 859        | 717       | 855       | 1271       | 1 619      | 1 727      |
| East Gippsland Region Water       | 65         | 38        | 58        | 65         | 79         | 195        |
| Central Gippsland Region Water    | 8          | -         | -         | 29         | 60         | 302        |
| South Gippsland Region Water      | 45         | 33        | 44        | 46         | 54         | 98         |
| Lower Murray Urban Water          | 200        | 107       | 200       | 200        | 367        | 669        |
| Grampians Wimmera Mallee<br>Water | -          | -         | -         | -          | -          | -          |
| Coliban Region Water              | 261        | 131       | 243       | 286        | 770        | 563        |
| Central Highlands Water           | 607        | 502       | 600       | 625        | 1 184      | 817        |
| Goulburn Valley Region Water      | 523        | 312       | 491       | 785        | 401        | 573        |
| North East Region Water           | 124        | 34        | 107       | 124        | 114        | 355        |
| Total                             | 12 640     | 12 111    | 12 545    | 13 045     | 12 375     | 12 481     |

#### G.19 Additional water supply cost to 2056

Source: CIE estimate.

#### Wastewater

There are multiple components to a sewerage system, including sewerage collection system (sewer network), treatment, winter storage of effluent and effluent and biosolids release or re-use.

Melbourne's sewerage system currently consists of:

- A network of over 3,000 km of large diameter pipes (300 mm or greater) (over 25,000 km including the reticulation system) and pumps that transfer sewage from homes and businesses to our treatment plants. It also has odour control facilities to prevent odour release from the sewerage network.
- Two large treatment plants, Eastern Treatment Plant (ETP) and Western Treatment Plant (WTP), and 26 smaller scale local treatment plants that process sewage, which can then be supplied as recycled water or safely released to a receiving environment.<sup>167</sup>

There are many system constraints that could impact on Melbourne's sewerage system. Some of these limits will only impact a localised area of the network, while others will impact the whole of the sewerage system. Some will occur in the near future, 10 to 20 years, while others are likely to be realised in the long term.

<sup>167</sup> https://www.melbournewater.com.au/water-and-environment/watermanagement/sewerage/importance-sewerage

The Melbourne Sewerage Strategy documents the process for considering investments and the potential drivers of investments but doesn't present the potential costs of alternative growth scenarios.

Wastewater infrastructure upgrades are typically driven by capacity constraints in either the network pipes or at the Wastewater Treatment Plants.

- The network pipes are typically sized to meet peak flows (which include stormwater infiltration). If volumes in dry days increases, there is limited capacity to manage volumes during peak periods, increasing the chance of 'overflow' events which could potentially breach licence conditions.
- The wastewater treatment plants upgrades could be impacted by the volume of wastewater and also type for chemicals entering the system (e.g. depending on non-residential activity). Ocean outfalls typically have a lower cost compared to increases in volumes to inland treatment plants which typically require wastewater to be treated to a higher level as part the environmental licence conditions for these plants. However, there are also environmental and social aspects that need to be considered not just the cost of treatment.

Different spatial growth patterns can have a bearing on the future wastewater costs, particularly if the growth is locating in parts of the network which are reaching capacity or where the wastewater is required to be discharged to inland systems (at a higher cost compared to the two large ocean outfalls).

IV's 2019<sup>168</sup> study on infrastructure costing indicates that Melbourne Water's centralised treatment plants have the capacity to support Melbourne's projected population growth for the next 30 years with incremental augmentation. The centralised plants treat around 90% of the sewage throughout Melbourne.

However, IV's 2019 (Appendix A, p.32) does highlight some differential cost implications of alternative growth scenarios

In northern and western outer growth areas there will be the requirement to provide new treatment facilities or extend connections to the Melbourne Water system, however these can be planned and implemented within a timeframe required to support demand. In western growth areas the most economical solution is likely to be to link into the Melbourne Water system, however in the northern and south eastern growth corridors localised systems may be more economical, attracting higher cost, but offering additional benefits, such as supply of environmental water or reducing demand on the centralised system.

IV's study also indicates that there are locations which may require a pressure sewer system (due to topography, poor soil or where there is high value vegetation). These systems are higher cost.

For the purpose of this analysis:

 for the three Melbourne corporations, we utilise Melbourne Water's estimate of the Long Run Marginal Cost (LRMC) of additional wastewater costs for its two major

<sup>168</sup> IV (2019), Infrastructure Provision in Different Development Settings, Metropolitan Melbourne, Technical Appendix, August.

**25**3

plants.<sup>169</sup> This includes the treatment, transfer and load costs.<sup>170</sup> The LRMC costs applied are \$1,073/ML at Western Plant and \$455/ML at the Eastern Plant.

- Based on advice from Melbourne Water we assume that Greater Western Water discharges 100 per cent of sewage to the Western Treatment Plant (WTP). For South East Water and Yarra Valley Water 22 percent and 65 percent, respectively is assumed to be discharged to the WTP.
- for the regional coastal and inland corporations, we assume that the recycled water (for non-drinking purposes) option is adopted at a cost of \$4,628/ML as identified in the WSAA report.<sup>171</sup>

Charts G.20 and G.21 presents the estimated additional wastewater transport and treatment costs in 2036 and 2056 for each scenario. This applies a discharge factor of 0.75 for houses and 0.85 for units. For businesses, we assume that 100% of water used is discharged to the sewer in Melbourne but 75% in other areas.

| Cost                           | <b>S</b> 0 | <b>S1</b> | S2        | <b>S</b> 3 | <b>S</b> 4 | <b>S</b> 5 |
|--------------------------------|------------|-----------|-----------|------------|------------|------------|
|                                | \$m, real  | \$m, real | \$m, real | \$m, real  | \$m, real  | \$m, real  |
| Greater Western Water          | 248        | 262       | 242       | 251        | 206        | 196        |
| South East Water               | 87         | 90        | 87        | 84         | 65         | 61         |
| Yarra Valley Water             | 100        | 107       | 105       | 81         | 67         | 61         |
| Wannon Water                   | 9          | -         | 9         | 10         | 26         | 60         |
| Westernport Water              | 18         | 15        | 18        | 22         | 22         | 47         |
| Barwon Region Water            | 243        | 200       | 242       | 363        | 502        | 485        |
| East Gippsland Region Water    | 21         | 12        | 20        | 21         | 29         | 55         |
| Central Gippsland Region Water | -          | -         | -         | -          | 20         | 122        |
| South Gippsland Region Water   | 23         | 16        | 22        | 24         | 35         | 50         |
| Lower Murray Urban Water       | 31         | 13        | 31        | 31         | 61         | 104        |
| Grampians WM Water             | -          | -         | -         | -          | -          | -          |
| Coliban Region Water           | 25         | -         | 24        | 31         | 161        | 120        |
| Central Highlands Water        | 122        | 102       | 122       | 126        | 251        | 191        |
| Goulburn Valley Region Water   | 64         | 24        | 62        | 88         | 104        | 146        |
| North East Region Water        | 10         | -         | 8         | 11         | 38         | 78         |
| Total                          | 1 000      | 843       | 992       | 1 144      | 1 587      | 1 775      |

#### G.20 Additional wastewater treatment cost to 2036

Source: CIE estimate

<sup>&</sup>lt;sup>169</sup> The LRMC does not include costs associated with servicing growth using existing assets which is effectively variable OPEX (e.g. electricity & chemicals) where existing assets are not at 100% utilisation.

<sup>&</sup>lt;sup>170</sup> Data on the BOD, TSS and TKN loads was estimated by Melbourne Water.

<sup>171</sup> Costs has been inflated to current dollars using the Producer Price Index.

| Cost                           | <b>S</b> 0 | <b>S1</b> | S2        | <b>S</b> 3 | S4        | <b>S</b> 5 |
|--------------------------------|------------|-----------|-----------|------------|-----------|------------|
|                                | \$m, real  | \$m, real | \$m, real | \$m, real  | \$m, real | \$m, real  |
| Greater Western Water          | 1 321      | 1 404     | 1 269     | 1 350      | 1 087     | 1 015      |
| South East Water               | 490        | 507       | 488       | 470        | 364       | 321        |
| Yarra Valley Water             | 697        | 737       | 747       | 577        | 484       | 408        |
| Wannon Water                   | 53         | 3         | 53        | 56         | 139       | 375        |
| Westernport Water              | 94         | 78        | 94        | 117        | 114       | 325        |
| Barwon Region Water            | 1401       | 1 154     | 1 392     | 2 091      | 2 868     | 3 022      |
| East Gippsland Region Water    | 113        | 65        | 101       | 114        | 154       | 370        |
| Central Gippsland Region Water | -          | -         | -         | 60         | 263       | 1 020      |
| South Gippsland Region Water   | 116        | 82        | 113       | 123        | 178       | 310        |
| Lower Murray Urban Water       | 192        | 97        | 191       | 194        | 358       | 676        |
| Grampians WM Water             | -          | -         | -         | -          | -         | -          |
| Coliban Region Water           | 262        | 114       | 242       | 294        | 1 007     | 757        |
| Central Highlands Water        | 601        | 491       | 593       | 621        | 1 319     | 918        |
| Goulburn Valley Region Water   | 549        | 309       | 515       | 829        | 592       | 913        |
| North East Region Water        | 124        | 20        | 104       | 128        | 198       | 477        |
| Total                          | 6 013      | 5 062     | 5 902     | 7 026      | 9 127     | 10 907     |

#### G.21 Additional wastewater treatment cost to 2056

Source: CIE estimate

Note that the costs presented above are based on levelized cost estimates from WSAA and the LRMC estimates from Melbourne Water. These costs reflect a combination of both capital and operating expenditure, although they are not separately identified. We disaggregate the capital and operating components below.

#### Cost implications of scenarios – network augmentation

The costs discussed above do not include the networks costs required to meet the growth. This could include, for example, augmenting pipelines and upgrading pumping stations to deal with the additional loads, as well as, expanding the network to service new growth areas.

The corporations' price submissions to the ESC provide an indication of the potential network augmentation costs. The Excel spreadsheets to the ESC identify 'growth' investments associated with 'Pipelines/network' and customer numbers over the next 10 years.<sup>172</sup> We calculated a dollar per additional customer for each corporation, separately for water and sewerage. This provides an approximation although there are limitations to this approach. For example, it only covers a 10 year period and expenditure is not necessarily linearly related to growth in customer numbers. Further, within each

<sup>172</sup> Costs for Melbourne Water and Greater Western Water were adopted for earlier submissions. Costs for North East Water was not available – we assumed an average of the inland corporations (excluding Goulburn Murray Water).

corporation there are likely to be different network augmentation costs. Therefore, it will depend on the location within each corporation where the future growth occurs.

The price submissions do not separately estimate the operating expenditure associated with growth network investments. However, the spreadsheets do report the capital and operating expenditure in each year over the forecast 10 year period. We apply these shares to estimate the additional operating expenditure associated with the network augmentation.

Table G.22 presents the estimated capital and operating cost per customer of the augmenting the network for growth, split by water and wastewater investments. For some regions such as Grampians Water and Westernport Water the network augmentation costs are low, reflecting the relatively lower growth in these regions.

| Cost                                 | Capex<br>Water | Capex Capex<br>Water Wastewater |             | Opex<br>Wastewater |
|--------------------------------------|----------------|---------------------------------|-------------|--------------------|
|                                      | \$/customer    | \$/customer                     | \$/customer | \$/customer        |
| Greater Western Water                | 4 805          | 6 338                           | 4 842       | 3 913              |
| South East Water                     | 2 360          | 5 688                           | 1 254       | 2 057              |
| Yarra Valley Water                   | 4 628          | 4 916                           | 2 690       | 1 603              |
| Wannon Water                         | 5 454          | 2 624                           | 10 359      | 4 398              |
| Westernport Water                    | -              | 3 097                           | -           | 4 650              |
| Barwon Region Water                  | 7 414          | 4 558                           | 5 578       | 5 092              |
| East Gippsland Region Water          | 1 435          | 1 351                           | 1 407       | 1 477              |
| Central Gippsland Region Water       | 2 364          | 4 572                           | 3 152       | 7 329              |
| South Gippsland Region Water         | 5 142          | 13 447                          | 5 113       | 7 447              |
| Lower Murray Urban Water             | 5 264          | 4 276                           | 5 147       | 6 846              |
| Grampians WM Water                   | -              | -                               | -           | -                  |
| Coliban Region Water                 | 2 582          | 3 004                           | 2 531       | 1 625              |
| Central Highlands Water              | 8 100          | 5 612                           | 8 799       | 6 610              |
| Goulburn Valley Region Water         | 5 900          | 2 758                           | 5 882       | 5 077              |
| North East Region Water <sup>a</sup> | 5 462          | 3 913                           | 5 590       | 5 039              |

#### G.22 Estimated network cost per customer, by water and wastewater

<sup>a</sup> Costs for North East Water was not available – we assumed an average of the inland corporations (excluding Goulburn Murray Water).

Source: CIE estimate based on price submission spreadsheets to the ESC.

Tables G.23 to G.26 present the resulting cost by 2036 and 2056 for both water and wastewater expenditure.

| Cost                           | <b>S</b> 0 | <b>S1</b> | S2        | <b>S</b> 3 | S4        | <b>S</b> 5 |
|--------------------------------|------------|-----------|-----------|------------|-----------|------------|
|                                | \$m, real  | \$m, real | \$m, real | \$m, real  | \$m, real | \$m, real  |
| Greater Western Water          | 239        | 251       | 236       | 243        | 206       | 198        |
| South East Water               | 639        | 674       | 638       | 617        | 520       | 493        |
| Yarra Valley Water             | 1 248      | 1 345     | 1 277     | 1047       | 972       | 925        |
| Wannon Water                   | 21         | 0         | 21        | 21         | 53        | 126        |
| Westernport Water              | 0          | 0         | 0         | 0          | 0         | 0          |
| Barwon Region Water            | 765        | 658       | 764       | 1 082      | 1 372     | 1 325      |
| East Gippsland Region Water    | 12         | 7         | 11        | 12         | 15        | 29         |
| Central Gippsland Region Water | 53         | 31        | 51        | 60         | 71        | 136        |
| South Gippsland Region Water   | 41         | 29        | 40        | 42         | 50        | 74         |
| Lower Murray Urban Water       | 25         | 12        | 25        | 25         | 47        | 76         |
| Grampians WM Water             | 0          | 0         | 0         | 0          | 0         | 0          |
| Coliban Region Water           | 85         | 63        | 84        | 89         | 188       | 153        |
| Central Highlands Water        | 299        | 238       | 298       | 310        | 688       | 492        |
| Goulburn Valley Region Water   | 179        | 123       | 175       | 214        | 203       | 244        |
| North East Region Water        | 95         | 63        | 93        | 95         | 129       | 198        |
| Total                          | 3 699      | 3 493     | 3 714     | 3 858      | 4 515     | 4 469      |

#### G.21 Additional WATER NETWORK cost to 2036

Source: CIE estimate

#### G.22 Additional WATER NETWORK cost to 2056

| Cost                           | <b>S</b> 0 | <b>S1</b> | <b>S</b> 2 | <b>S</b> 3 | S4        | <b>S</b> 5 |
|--------------------------------|------------|-----------|------------|------------|-----------|------------|
|                                | \$m, real  | \$m, real | \$m, real  | \$m, real  | \$m, real | \$m, real  |
| Greater Western Water          | 556        | 587       | 543        | 573        | 471       | 439        |
| South East Water               | 1 583      | 1 638     | 1573       | 1 481      | 1 257     | 1,101      |
| Yarra Valley Water             | 3 406      | 3 702     | 3 610      | 2 819      | 2 541     | 2,124      |
| Wannon Water                   | 40         | 1         | 40         | 40         | 109       | 352        |
| Westernport Water              | 0          | 0         | 0          | 0          | 0         | 0          |
| Barwon Region Water            | 1 786      | 1511      | 1777       | 2 588      | 3 286     | 3 625      |
| East Gippsland Region Water    | 28         | 17        | 24         | 28         | 34        | 96         |
| Central Gippsland Region Water | 117        | 70        | 107        | 135        | 163       | 410        |
| South Gippsland Region Water   | 90         | 67        | 88         | 94         | 109       | 228        |
| Lower Murray Urban Water       | 68         | 41        | 68         | 68         | 119       | 225        |
| Grampians WM Water             | 0          | 0         | 0          | 0          | 0         | 0          |
| Coliban Region Water           | 203        | 149       | 192        | 213        | 555       | 444        |
| Central Highlands Water        | 695        | 545       | 680        | 718        | 2 080     | 1 345      |
| Goulburn Valley Region Water   | 588        | 426       | 555        | 843        | 632       | 800        |
| North East Region Water        | 219        | 144       | 199        | 219        | 304       | 571        |
| Total                          | 9 381      | 8 897     | 9 455      | 9 817      | 11 658    | 11 761     |

Source: CIE estimate

| Cost                           | <b>S</b> 0 | <b>S1</b> | S2        | <b>S</b> 3 | S4        | <b>S</b> 5 |
|--------------------------------|------------|-----------|-----------|------------|-----------|------------|
|                                | \$m, real  | \$m, real | \$m, real | \$m, real  | \$m, real | \$m, real  |
| Greater Western Water          | 230        | 242       | 228       | 234        | 199       | 191        |
| South East Water               | 1 328      | 1 400     | 1 325     | 1 282      | 1081      | 1 023      |
| Yarra Valley Water             | 1 039      | 1 119     | 1063      | 872        | 809       | 770        |
| Wannon Water                   | 8          | -0        | 8         | 8          | 20        | 48         |
| Westernport Water              | 48         | 42        | 48        | 58         | 55        | 118        |
| Barwon Region Water            | 517        | 445       | 516       | 731        | 928       | 896        |
| East Gippsland Region Water    | 10         | 6         | 9         | 10         | 12        | 24         |
| Central Gippsland Region Water | 102        | 60        | 100       | 117        | 139       | 264        |
| South Gippsland Region Water   | 74         | 53        | 73        | 76         | 90        | 134        |
| Lower Murray Urban Water       | 24         | 12        | 24        | 24         | 43        | 71         |
| Grampians WM Water             | 0          | 0         | 0         | 0          | 0         | 0          |
| Coliban Region Water           | 70         | 52        | 69        | 74         | 155       | 126        |
| Central Highlands Water        | 187        | 149       | 187       | 194        | 431       | 308        |
| Goulburn Valley Region Water   | 105        | 72        | 103       | 126        | 120       | 143        |
| North East Region Water        | 67         | 44        | 66        | 67         | 91        | 140        |
| Total                          | 3 809      | 3 696     | 3 819     | 3 874      | 4 173     | 4 258      |

#### G.23 Additional WASTEWATER NETWORK cost to 2036

Source: CIE estimate

#### G.24 Additional WASTEWATER NETWORK cost to 2056

| Cost                           | <b>S</b> 0 | <b>S1</b> | <b>S</b> 2 | <b>S</b> 3 | S4        | <b>S</b> 5 |
|--------------------------------|------------|-----------|------------|------------|-----------|------------|
|                                | \$m, real  | \$m, real | \$m, real  | \$m, real  | \$m, real | \$m, real  |
| Greater Western Water          | 536        | 566       | 524        | 552        | 454       | 423        |
| South East Water               | 3 288      | 3 402     | 3 266      | 3 076      | 2 611     | 2 286      |
| Yarra Valley Water             | 2 836      | 3 082     | 3 005      | 2 347      | 2 116     | 1769       |
| Wannon Water                   | 15         | 0         | 15         | 15         | 42        | 134        |
| Westernport Water              | 109        | 92        | 109        | 132        | 123       | 394        |
| Barwon Region Water            | 1 208      | 1022      | 1 201      | 1 750      | 2 222     | 2 451      |
| East Gippsland Region Water    | 23         | 14        | 20         | 23         | 28        | 79         |
| Central Gippsland Region Water | 228        | 136       | 207        | 261        | 316       | 796        |
| South Gippsland Region Water   | 164        | 122       | 160        | 170        | 197       | 414        |
| Lower Murray Urban Water       | 63         | 38        | 63         | 63         | 110       | 209        |
| Grampians WM Water             | 0          | 0         | 0          | 0          | 0         | 0          |
| Coliban Region Water           | 168        | 123       | 159        | 176        | 459       | 367        |
| Central Highlands Water        | 436        | 342       | 426        | 450        | 1 304     | 843        |
| Goulburn Valley Region Water   | 345        | 250       | 326        | 495        | 371       | 470        |
| North East Region Water        | 155        | 102       | 141        | 155        | 215       | 403        |
| Total                          | 9 574      | 9 291     | 9 623      | 9 665      | 10 567    | 11 040     |

Source: CIE estimate

#### Summary

Table G.25 summarises the estimated expenditure, disaggregated by water supply augmentation and wastewater treatment costs, as well as, costs associated with upgrades to the network. Costs are highest for the scenarios 4 and 5.

| Item                    | Sc0                                   | Sc1    | Sc2    | Sc3    | Sc4    | Sc5    |  |  |
|-------------------------|---------------------------------------|--------|--------|--------|--------|--------|--|--|
|                         | \$m                                   | \$m    | \$m    | \$m    | \$m    | \$m    |  |  |
| Supply augmentation/tre | Supply augmentation/treatment to 2036 |        |        |        |        |        |  |  |
| Water - capex           | 1 209                                 | 1 170  | 1 209  | 1 228  | 1 203  | 1 190  |  |  |
| Water - opex            | 933                                   | 887    | 927    | 963    | 985    | 1 000  |  |  |
| Wastewater - capex      | 554                                   | 487    | 550    | 614    | 823    | 880    |  |  |
| Wastewater - opex       | 446                                   | 356    | 441    | 530    | 765    | 895    |  |  |
| Sub total               | 3 142                                 | 2 900  | 3 127  | 3 334  | 3 776  | 3 964  |  |  |
| Supply augmentation/tre | atment to 2056                        |        |        |        |        |        |  |  |
| Water - capex           | 7 156                                 | 6 910  | 7 130  | 7 313  | 6 841  | 6 773  |  |  |
| Water - opex            | 5 483                                 | 5 201  | 5 415  | 5 732  | 5 534  | 5 707  |  |  |
| Wastewater - capex      | 3 321                                 | 2 912  | 3 274  | 3 729  | 4 743  | 5 351  |  |  |
| Wastewater - opex       | 2 693                                 | 2 149  | 2 628  | 3 296  | 4 384  | 5 557  |  |  |
| Sub total               | 18 653                                | 17 173 | 18 447 | 20 071 | 21 502 | 23 388 |  |  |
| Network to 2036         |                                       |        |        |        |        |        |  |  |
| Water - capex           | 2 154                                 | 2 067  | 2 165  | 2 225  | 2 536  | 2 488  |  |  |
| Water - opex            | 1 546                                 | 1 426  | 1 549  | 1 633  | 1979   | 1 982  |  |  |
| Wastewater - capex      | 2 468                                 | 2 461  | 2 478  | 2 436  | 2 511  | 2 504  |  |  |
| Wastewater - opex       | 1 342                                 | 1 235  | 1341   | 1 438  | 1 662  | 1 754  |  |  |
| Sub total               | 7 509                                 | 7 189  | 7 533  | 7 731  | 8 688  | 8 728  |  |  |
| Network to 2056         |                                       |        |        |        |        |        |  |  |
| Water - capex           | 5 482                                 | 5 280  | 5 544  | 5 662  | 6 522  | 6 478  |  |  |
| Water - opex            | 3 899                                 | 3 617  | 3 911  | 4 156  | 5 137  | 5 284  |  |  |
| Wastewater - capex      | 6 235                                 | 6 216  | 6 300  | 6 067  | 6 338  | 6 307  |  |  |
| Wastewater - opex       | 3 339                                 | 3 075  | 3 322  | 3 598  | 4 229  | 4 732  |  |  |
| Sub total               | 18 955                                | 18 188 | 19 078 | 19 482 | 22 225 | 22 801 |  |  |

#### **G.25** Summary of estimated additional water and wastewater expenditure

Source: The CIE

In terms of the distributional analysis, for the purpose of this analysis, we have assumed that the cost of water infrastructure is predominantly recovered through user charges.

## *H* Drainage/stormwater management

Stormwater drainage is required to protect property from flooding and to maintain water quality and biodiversity standards in receiving waters under fluctuating rainfall conditions, whether these are urban rivers and creeks or the bays. Inadequate stormwater drainage infrastructure exists in localised pockets across all of Melbourne's established areas constructed prior to the late 1970's, after which time improved stormwater drainage standards were introduced.

Stormwater drainage within a development site is the responsibility of the developer via the construction of drainage pathways that lead directly to receiving waterways. Outside the development site, local councils are responsible for managing stormwater.<sup>173</sup>

There could potentially be differences in drainage costs between scenarios. IV's 2019<sup>174</sup> study indicates that 'civil works' was the second largest cost category aside from transport, amounting to around \$35,000/dwelling in capital and \$34,000/dwelling in operating costs over a 30 year period. However, these costs included a wide range of other costs, both inside and outside the development area.<sup>175</sup>

Stormwater cost within the development site have been estimated as part of the local infrastructure cost. Stormwater cost outside the development site have not been estimated due to the lack of robust data that can be applied to our analysis.

<sup>173</sup> Melbourne Water is responsible for some major drainage works. In it's area of operation it manages 1,400 kilometres of regional drains with the local councils responsible for 25,000 kilometres of local drains and street gutters. https://www.melbournewater.com.au/water-andenvironment/flooding-advice/drainage-system

<sup>&</sup>lt;sup>174</sup> IV (2019), Infrastructure Provision in Different Development Settings, Metropolitan Melbourne, Technical Appendix, August.

<sup>175</sup> It includes all earthworks, lot benching and retaining walls, transport and circulation infrastructure (including roads, pathways and nature strips) and landscaping within the development estate. Stormwater drainage both within and external to the development estate is included in the civil works cost. Stormwater drainage has not been reported separately as a cost as development as it cannot be accurately separated from other civil costs.

## I Telecommunications

Telecommunications infrastructure is another key utility service that is required in new developments. Telecommunications services cover broadband and mobile services. Mobile services are provided in a competitive market and can adapt to provide a level of quality consistent with nationally harmonised pricing that is used by most mobile telecommunication companies. Mobile coverage is available across Victoria in urbanised areas and beyond.<sup>176</sup>

Broadband infrastructure is provided as a last resort by NBN Co as a government owned monopoly, providing wholesale broadband, which can be accessed by all retail service providers. However, infrastructure can also be provided by others.<sup>177</sup> Broadband is provided by fibre, wireless and satellite technology. For fibre developments a developer will be responsible for installing pits and pipes ready for broadband. Where there is no fixed line, connection is provided fixed wireless and satellite services by NBNCo or private operators such as Starlink.<sup>178</sup>

#### **Costs drivers**

Developers are responsible for meeting the costs of connecting their estate to the telecommunications network (the point of interconnection). NBN Co will leverage transmission capacity from their NBN Fibre Access Nodes to the relevant point of interconnection.

There are a range of factors that drive costs for the provision of telecommunications services:

- The distance between the boundary of the property and connection point to the wider area network
- The density of the development (economies of scale can be achieved through higher levels of density)
- The terrain on which the assets will be installed.

The telecommunications cost that we included is the cost of pit and pipes for developers and cost of running fibre to new developments. We assume all new developments are serviced with fibre to the home.

The cost of telecommunications has been included as part of the local infrastructure (see chapter A.

<sup>176</sup> https://www.telstra.com.au/coverage-networks/our-coverage

<sup>177</sup> https://www.infrastructure.gov.au/department/media/publications/telecommunicationsnew-developments

<sup>178</sup> https://www.starlink.com/map

## J Health

- We have not estimated the cost of providing additional health infrastructure related to hospitals. There are many factors that determine how health infrastructure is provided in addition to population growth and so, for each scenario, many different approaches could be undertaken. As major hospitals service large catchments we have assumed that hospital infrastructure provision will not vary significantly across the scenarios.
- We have costed local community health facilities as part of the community facilities cost. Those capture the local community needs and cover, for example, specialist medical treatment, nursing care, allied health, dental services, antenatal and postnatal clinics, district nursing, primary injury, services for children (immunisation, speech therapy, etc) and community mental health.

While future population distribution is a possible factor influencing health infrastructure costs, it is only one aspect of the complexity of health services demand and delivery. Ageing of the population and changes in population health and treatment pathways will drive continuous growth in demand for health infrastructure and services in Melbourne over the next several decades. This is driving innovation in service delivery models as suppliers of health services find new ways of meeting demand growth in cost effective ways.

The population distribution scenarios examined in this review impose different magnitudes of population change in each local area, which may trigger new health infrastructure costs depending on local capacity constraints and demand management options.

A variety of interrelated demand and supply factors influence health infrastructure expenditure and delivery decisions:

- While the magnitude of future population changes will place pressure on necessary health infrastructure costs, other relevant demand-side factors affected by population distribution include the demographic and socioeconomic profile of the resident population and the degree of existing unmet or underserviced demand across the broad and interconnected spectrum of health services.
  - For instance, different population cohorts require different types of health services. Younger communities are more likely to require a higher proportion of child and family services and primary health care, compared to more aged communities that may require more sub-acute, residential aged care and community-based services.
- Demand for types of health services can also reflect differing levels of access to appropriate preventative and early intervention health services.

 For instance, demand for acute health services can often reflect local population access to effective primary and allied health services.

This complexity means that different local populations are likely to require access to different combinations of general practice services, primary and community health care, aged care, private health services, dental care, medical imaging and pathology services, day procedure services, allied health and other services.

Although not impacted by the dispersion of population, the increasing prevalence of chronic and non-communicable diseases, consumer preferences for new care delivery models and the availability of new forms of health intervention technologies will also exert demand pressure and may ultimately prompt new health infrastructure costs.

Several supply side responses have the potential to offset this demand pressure, including new models of care to manage demand more efficiently, the rollout of specialist health services, and the opportunity to co-locate complementary providers of health services. Advances in technological innovations can contribute to an overall reduction in costs of delivering healthcare through newer delivery models. For example, the hospital in the home model of care allows for care to be delivered outside of hospital without compromising on standard and quality of care.

However, there are limits to the flexibility and adaptability of supply to additional demand, which varies from one geographic area to the next. For instance, large inner-city hospitals that already have large catchment areas and older hospitals that may be ill-suited to capacity enhancing measures may not be able to flex enough to meet new demand without changes to the servicing of existing demand. The (lack of) land availability, planning and zoning restrictions, and price of land for expanded health infrastructure stocks, can also present a challenge to geographic areas trying to cater for higher than forecast population (and health services) demand.<sup>179</sup>

Chart J.2 shows the various demand and supply side factors resulting from or associated with each of the population distribution scenarios, which will influence future health infrastructure costs for the wide spectrum of health services including hospitals, primary and allied health care facilities, medical imaging and pathology practices and infrastructure for other health services.

Clearly there are many forces in play, which results in an important degree of regional variation. For instance, Melbourne's metro area contains several well-established hospitals (see chart J.1) which offer high complexity services and have a large drawing area as a result. This service model may in some cases limit the extent to which the distribution of growth at the local level will impact on the need for additional capacity at existing health sites and/or the need for new facilities. In other cases it will exacerbate existing pressure depending on the options available to the hospital and other health services in the area to otherwise manage demand.

<sup>179</sup> While it is acknowledged that land costs can impact on health infrastructure costs in different geographic areas, land costs comprise a very small proportion of total construction costs for new health services, which in the case of hospitals is around 3 per cent of construction costs.



#### J.1 Victorian private and public hospitals

Data source: CIE.

Given that the scenarios impose differing magnitudes of population changes across Victoria to 2056, they can potentially impact on future infrastructure costs depending on the:

- total number of additional residents in each LGA over the years to 2056;
- proportional change in residents compared to existing 2021 population in an LGA;
- existing unmet or underserviced demand for health services in each LGA shown by measures such as available public beds per 100 000 of population, available private beds per 100 000 of population, and emergency department waiting times for triage relative to the Victorian average, and
- access to effective hospital demand management programs in each LGA, shown by measures such as the rate of hospitalisations for ambulatory sensitive conditions per 100 000 population for a particular LGA relative to the Victoria average.

To meet the objectives of this analysis, we have costed local community health facilities as part of the community facilities cost. Those capture the local community needs and cover, for example, specialist medical treatment, nursing care, allied health, dental services, antenatal and postnatal clinics, district nursing, primary injury, services for children (immunisation, speech therapy, etc) and community mental health.

We have not estimated the cost of providing additional health infrastructure in terms of hospitals given That there are many factors that determine how health infrastructure is provided in addition to population growth and so, for each scenario, many different approaches could be undertaken. Further, as major hospitals service large areas, we have assumed that the cost of hospital infrastructure provision will not vary significantly across the scenarios.

#### J.2 Demand and supply factors affect future demand and infrastructure costs



Note: CIE.

## K Other infrastructure sectors

This chapter includes high-level descriptions of infrastructure sectors which have not been quantified as part of this analysis.

#### **Ports**

Ports include sea and airports. Victoria has one international airport (Melbourne Tullamarine), 19 regional airports and airfields,<sup>180</sup> and five commercial seaports.<sup>181</sup> The infrastructure cost of building new or augmenting existing ports and operating those can be significant. However, as sea and airports serve large catchments and in some cases the whole of the state, we do not expect that cost would vary by scenario.

#### Police, emergency services, and Justice

Government is the primary provider of police, emergency services and justice as part of the basic community services. The estimation of those cost is outside of the scope of this analysis, however, in general, it is expected that scenarios with more greenfield development would have higher infrastructure requirements for police, emergency services, and justice.<sup>182</sup>

<sup>180</sup> https://airport-authority.com/browse-AU-VIC

<sup>181</sup> https://transportsafety.vic.gov.au/maritime-safety/ports-and-shipping/victorian-ports

<sup>182</sup> SGS (2016), Comparative costs of urban development: a literature review,

https://www.infrastructurevictoria.com.au/wp-content/uploads/2019/04/SGS-Economics-and-Planning-Comparative-costs-of-infrastructure-across-different-development-settings.pdf, p. 38

# *L Detailed assumptions for assessment of housing impacts*

#### Value assumptions

#### Price of dwellings by characteristic

To estimate the value of housing at current attributes of each place (i.e. each SA2), there are two broad approaches:

- 1 estimating the mean sale price and rent for each combination of SA2 and dwelling type, or
- 2 estimating a model to predict mean sale price based on SA2, dwelling type and other characteristics such as dwelling size.

The first approach implicitly assumes that floor area and lot size of new dwellings are the same as existing dwellings for each combination of dwelling type and SA2.

Hence, we use the second approach. We estimate six linear regression models, namely three sale price models and three rental models, with one for each dwelling type in the PropTrack data (houses, townhouses and apartments). Each of these models consists of the following variables:

- Sale prices or rents as the dependent variable,
- The number of bedrooms, bathrooms and car spaces,
- Land area of each property,
- Floor area (for houses only),
- The quarter in which the property is sold or leased, and
- SA2.

We then use the coefficients estimated by this model to predict the sale price and rent for each property type in each SA2. This requires assumptions about the land area of new dwellings, floor area of new houses, and the number of bedrooms, bathrooms and car spaces. For consistency, we assume that each new dwelling has three bedrooms, two bathrooms and one car space.

In practice, the size of dwellings will depend on the occupancy rate for each dwelling type, with apartments likely to have fewer people and therefore have less bedrooms on average. However, since the total number of dwellings in each scenario is the same, and therefore, occupancy rates are the same in aggregate, it is reasonable to assume that dwellings have the same number of bedrooms, bathrooms and car spaces.

The assumed floor area of new dwellings is shown in table L.1. The average lot size of new dwellings is shown and explained in Appendix O.

#### L.1 Assumed floor size of new dwellings

| Measure                                                      | Houses | Townhouses | Apartments |
|--------------------------------------------------------------|--------|------------|------------|
|                                                              | sqm    | sqm        | sqm        |
| Average floor area of a new dwelling -<br>Victoria - 2021/22 | 240.8  | 170.6      | 114.9      |

Source: ABS, 2023, Building Activity, Australia, April 2023.

#### Rent and sale price growth

Data about historical median prices of dwellings in Victoria is available from the ABS publication *Total Value of Dwellings*.<sup>183</sup> Real growth in dwelling prices has been lower in Melbourne that in the Rest of Victoria over the period since September 2003 to December 2022 (table L.2). We calculate a weighted average growth in prices for all of Victoria based on the share of dwellings in Melbourne vs the Rest of Victoria, which is based on the Victoria in Future population projections (VIF) for 2021. This is applied to derive housing values for 2036 and 2056.

## L.2Comparing historical price growth between Melbourne and Rest of Victoria (2003 to 2022)

| Measure                                                       | Melbourne | Rest of VIC | Average  |
|---------------------------------------------------------------|-----------|-------------|----------|
|                                                               | Per cent  | Per cent    | Per cent |
| Median Price of Established House Transfers<br>(Unstratified) | 2.9       | 3.6         | 3.1      |
| Median Price of Attached Dwelling Transfers<br>(Unstratified) | 1.5       | 2.5         | 1.8      |
| Share of dwellings (2021)                                     | 71        | 29          |          |

Source: Median prices are sourced from ABS Total value of dwellings, while the share of dwellings is based on the Victoria in Future population projections data for 2021, CIE.

Data about dwelling rents in Victoria is available from the ABS Consumer Price Index.

#### L.3Dwelling value growth assumptions

| Dwelling type  | Renter | R       | eal rental growth rate |                     | Implied dwelling services price index |          |          |
|----------------|--------|---------|------------------------|---------------------|---------------------------------------|----------|----------|
|                | Rents  |         | Sales                  | Weighted<br>average | 2021                                  | 2036     | 2056     |
|                | %      | %/annum | %/annum                | %/annum             | 2021 = 1                              | 2021 = 1 | 2021 = 1 |
| Separate house | 21%    | 0.9%    | 3.1%                   | 2.6%                | 1.000                                 | 1.479    | 2.491    |
| Attached       | 45%    | 0.9%    | 3.1%                   | 2.1%                | 1.000                                 | 1.368    | 2.077    |

183 ABS, 2023, Total Value of Dwellings, March Quarter 2023, Table 2, available at: https://www.abs.gov.au/statistics/economy/price-indexes-and-inflation/total-valuedwellings/latest-release

| Dwelling type          | Renter | Real rental growth rate |         |                     | Implied dw | Implied dwelling services price index |          |  |
|------------------------|--------|-------------------------|---------|---------------------|------------|---------------------------------------|----------|--|
| 5                      |        | Rents                   | Sales   | Weighted<br>average | 2021       | 2036                                  | 2056     |  |
|                        | %      | %/annum                 | %/annum | %/annum             | 2021 = 1   | 2021 = 1                              | 2021 = 1 |  |
| Low rise apartments    | 64%    | 0.9%                    | 3.1%    | 1.7%                | 1.000      | 1.287                                 | 1.803    |  |
| Medium rise apartments | 64%    | 0.9%                    | 3.1%    | 1.7%                | 1.000      | 1.287                                 | 1.803    |  |
| High rise apartments   | 64%    | 0.9%                    | 3.1%    | 1.7%                | 1.000      | 1.287                                 | 1.803    |  |
| Other                  | 40%    | 0.9%                    | 3.1%    | 2.2%                | 1.000      | 1.390                                 | 2.157    |  |

Source: ABS Consumer Price Index.

#### **Construction costs**

We have used the ABS estimates of the cost of construction. These are published in the *Building Activity, Australia, April 2023*,<sup>184</sup> and are Victoria-specific estimates of the average cost of new dwelling construction.

These estimates align reasonably well to two other sources available for construction costs:

- Construction cost estimates based on data provided by JLL as part of The CIE (2020).<sup>185</sup> These estimates were in the form of \$/m2 of floor area, and have been converted to estimates for Victoria based on average floor area of new dwellings. These are very close to the ABS estimates, except are around \$130 000 higher per dwelling for attached dwellings compared to the ABS data.
- Estimates of construction costs published by SMEC in the *Infrastructure Provision in Different Development Settings: Metropolitan Melbourne Costing and Analysis Report.*<sup>186</sup> These have been escalated based on the ABS Producer Price Index for house and other residential building construction. These estimates are lower for houses, and what SMEC refers to as 'medium density' (which we align to low rise apartments and attached houses). However, the estimated cost of 'high density' construction (which we align to mid- and high-rise apartments) is far higher than both ABS and JLL.

We have preferred the ABS estimates since they are the most recent and are part of a widely cited publication.

186 SMEC, 2019, Infrastructure Provision in Different Development Settings: Metropolitan Melbourne Costing and Analysis Report, prepared for Infrastructure Victoria, available at: https://www.infrastructurevictoria.com.au/wp-content/uploads/2019/04/SMEC-Infrastructure-Provision-in-Different-development-Settings-Metroplitan-Melbourne-Costingand-Analysis-Report-January-2019.pdf

<sup>184</sup> Available at: https://www.abs.gov.au/statistics/industry/building-andconstruction/building-activity-australia/dec-2022/Building%20Activity%20Average%20Cost.xlsx

<sup>185</sup> The CIE, 2020, Western Sydney Place Based Infrastructure Compact, Final Report, prepared for the Greater Sydney Commission, available at: https://gsc-public-1.s3-ap-southeast-2.amazonaws.com/s3fs-public/appendix\_6\_-\_economic\_evaluation\_pic\_2.pdf?YI2OKoda1ZmXFIXYZH3cXVDJurKoxcM.



## L.4 Construction cost estimates per dwelling, by dwelling type and organisation source

Data source: As noted in chart.

#### Construction cost escalation

Construction cost escalation is based on historical growth in ABS Producer Price Indices for house and other residential building construction in Victoria.<sup>187</sup> The price of house construction in Victoria has increased by 1.03 per cent on average in real terms since the beginning of the data series (September 1998). On the other hand, other residential building construction has fallen on average 0.07 per cent annually in real terms over this period (1998 to 2023). We assume that real cost escalation is zero for apartments rather than assuming that real costs fall, on the basis that the rate of real cost escalation is small and subject to some uncertainty. The same construction cost escalation is applied to all areas.

#### L.5 Assumed rate of real escalation for dwelling construction costs

| Dwelling type          | Assumed real cost escalation rate per annum |
|------------------------|---------------------------------------------|
|                        | Per cent                                    |
| Separate house         | 1.03                                        |
| Attached               | 1.03                                        |
| Low rise apartments    | 0.00                                        |
| Medium rise apartments | 0.00                                        |
| High rise apartments   | 0.00                                        |
| Other                  | 1.03                                        |

Source: CIE, based on analysis of ABS Producer Price Indices.

<sup>187</sup> ABS, Producer Price Indices, https://www.abs.gov.au/statistics/economy/price-indexes-andinflation/producer-price-indexes-australia/latest-release#construction.

#### Opportunity cost of land used for dwellings

The housing model estimates the value of housing net of construction costs and the opportunity cost of land (including an allowance for land taken by local infrastructure to support residential development, discussed in Appendix O).

The share of dwellings that are greenfield developments, by region, is shown in table L.6, and the one-off value of this land is shown in table L.7. Note that Inner and Middle Melbourne are excluded from this table of values since no development in this region is assumed to be greenfield. Agricultural land is used as the opportunity cost, as this is the most likely source of additional urban land.

#### L.6 Share of dwellings in each region that are greenfield developments

| Share Greenfield                 | Share    | Source                            |
|----------------------------------|----------|-----------------------------------|
|                                  | Per cent |                                   |
| Inner Melbourne                  | 0%       | UDP Melbourne Growth Area Landuse |
| Middle Melbourne                 | 0%       | UDP Melbourne Growth Area Landuse |
| Outer Melbourne                  | 2%       | UDP Melbourne Growth Area Landuse |
| Melbourne New Growth Area        | 100%     | UDP Melbourne Growth Area Landuse |
| Regional City                    | 95%      | UDP Regional 2022                 |
| Regional Centres and Rural Areas | 100%     | UDP Regional 2022                 |

Source: As noted, CIE.

#### L.7 Value of agricultural land

| Region                           | Value of agricultural land |
|----------------------------------|----------------------------|
|                                  | \$/m2                      |
| Outer Melbourne                  | 54.2                       |
| Melbourne New Growth Area        | 7.8                        |
| Regional City                    | 7.8                        |
| Regional Centres and Rural Areas | 2.4                        |

Source: Valuer General data, CIE.

#### Churn rate

Construction of new dwellings typically requires demolition of existing dwellings. We refer to the 'churn rate' as the ratio of gross new dwellings to the number of net new dwellings. A ratio of 2 implies that 2 separate houses have to be constructed to achieve 1 net new house, since for each new house constructed an existing house has to be demolished. For high rise apartments the churn rate will be lower — i.e. construction of 11 new dwellings would require demolition of one dwelling, giving a net of 10 dwellings. The implied churn rate is then 1.1.

For the Melbourne new growth areas and regional areas, we assume that there are no demolitions required and, therefore, the churn rate is one. The churn rate assumptions are shown in table L.8.

Note that there is limited data to support developing these estimates of churn rates, but they are consistent with the rates assumed in our past work.<sup>188</sup>

| Region                           | Separate house<br>and other<br>dwellings     | Attached                                     | Low- and medium-<br>rise apartments          | High-rise<br>apartments                      |
|----------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
|                                  | Gross number of<br>homes per net<br>new home | Gross number of<br>homes per net<br>new home | Gross number of<br>homes per net new<br>home | Gross number of<br>homes per net new<br>home |
| Inner Melbourne                  | 2                                            | 1.5                                          | 1.3                                          | 1.1                                          |
| Middle Melbourne                 | 2                                            | 1.5                                          | 1.3                                          | 1.1                                          |
| Outer Melbourne                  | 2                                            | 1.5                                          | 1.3                                          | 1.1                                          |
| Melbourne New Growth Area        | 1                                            | 1                                            | 1                                            | 1                                            |
| Regional City                    | 1                                            | 1                                            | 1                                            | 1                                            |
| Regional Centres and Rural Areas | 1                                            | 1                                            | 1                                            | 1                                            |

#### L.8 Churn rate assumptions for dwellings

Source: CIE assumptions.

### Hedonic modelling for the value of accessibility

We have estimated hedonic models of sale prices for each type of dwelling in the PropTrack data. These models are aimed at estimating the relationship between job access density by car and public transport and sale prices, in order to value changes in accessibility.

These estimates imply that a 1 per cent increase in job density by car for a travel zone leads to a 0.09 per cent increase in house and townhouse values, and a 0.20 per cent increase in apartment values.

A key limitation of this modelling is that we cannot use a log specification for job access density via public transport, because many travel zones have a value of zero for public transport accessibility.<sup>189</sup> Hence, for public transport, a 50 000 unit increase in the job access density via public transport metric is associated with a 4.16 per cent increase in house values, a 3.08 per cent increase in townhouse values, and a 1.21 per cent increase in apartment values.

<sup>188</sup> The CIE, 2020, Western Sydney Place Based Infrastructure Compact, Final Report, prepared for the Greater Sydney Commission, available at: https://gsc-public-1.s3-ap-southeast-2.amazonaws.com/s3fs-public/appendix\_6\_-\_economic\_evaluation\_pic\_2.pdf?YI2OKoda1ZmXFIXYZH3cXVDJurKoxcM.

<sup>189</sup> This would reflect that the modelled public transport time from these travel zones to each destination exceeds 180 minutes, suggesting that these are travel zones without any public transport service.

#### L.9 Hedonic modelling accessibility

| Variable                                              | Houses       | Townhouses   | Apartments   |
|-------------------------------------------------------|--------------|--------------|--------------|
| Number of bedrooms                                    |              |              |              |
| 0 or 1                                                | Base level   | Base level   | Base level   |
| 2                                                     | .26397932*** | .38653963*** | .39269221*** |
| 3                                                     | .29836307*** | .54539239*** | .62759047*** |
| 4 (and for townhouses and apartments, also 5 or more) | .42854755*** | .72141704*** | .55564556*** |
| 5 or more                                             | .55371325*** | N/A          | N/A          |
| Number of bathrooms                                   |              |              |              |
| 0 or 1                                                | Base level   | Base level   | Base level   |
| 2                                                     | .13372364*** | .08699614*** | .1470114***  |
| 3 (and for townhouses and apartments, also 4 or more) | .34615436*** | .15741307*** | .20428016*** |
| 4 or more (houses only)                               | .27040289*** | N/A          | N/A          |
| Number of car spaces                                  |              |              |              |
| 0                                                     | Base level   | Base level   | Base level   |
| 1                                                     | -0.00348227  | -0.01742629  | .19860657*** |
| 2                                                     | .02565614*** | .08813087*** | .36124463*** |
| 3 (and for townhouses and apartments, also 4 or more) | .05512902*** | -0.01715609  | .2007254***  |
| 4 or more (houses only)                               | 01591689***  |              |              |
| Other characteristics                                 |              |              |              |
| Ln(land area)                                         | .19138001*** | .05371182*** | (omitted)    |
| Ln(floor area) (houses only)                          | .07067912*** | (omitted)    | (omitted)    |
| Ln(job access density by private vehicle)             | .08865734*** | .09004347*** | .19879653*** |
| Job access density by public transport                | 8.315e-07*** | 6.159e-07*** | 2.412e-07*** |
| Within 800m of a metropolitan centre                  | 14064525***  | 22847642***  | 15251359***  |
| Within 800m of a major activity centre                | .08299871*** | 01191568***  | -0.00413337  |
| Within 800m of the Central City (i.e. CBD)            | 68467402***  | 0.1818724    | 07711755***  |
| Within 250m of an arterial road                       | .06864507*** | .04186997*** | 0.00385961   |
| Within 100m of an arterial road                       | .00999342*** | 01198159***  | 0205262***   |
| Ln(distance to the coast)                             | 11300399***  | 09007169***  | 07444449***  |

Note: Asterisks indicate that the variable is significant at a particular level of significance threshold, as follows: \* = 10 per cent, \*\* = 5 per cent, \*\*\* = 1 per cent.

Source: CIE.

Based on these outputs, in the housing model we apply the relationships between accessibility and values shown in table L.10. Note that the impact of private vehicle accessibility to jobs is applied in a multiplicative fashion. For example, a 1 per cent increase in job access density by private vehicle is associated with an approximately 0.089 per cent increase in separate house values. A 10 000 unit increase in public transport accessibility is associated with a 0.83 per cent increase in separate house values.

| Mode             | Link<br>function | Separate<br>house | Attached  | Low rise<br>apartments | Medium<br>rise<br>apartments | High rise<br>apartments | Other     |
|------------------|------------------|-------------------|-----------|------------------------|------------------------------|-------------------------|-----------|
| Private vehicle  | log              | 0.089             | 0.090     | 0.199                  | 0.199                        | 0.199                   | 0.089     |
| Public transport | linear           | 8.315E-07         | 6.159E-07 | 2.412E-07              | 2.412E-07                    | 2.412E-07               | 8.315E-07 |
| Source: CIE.     |                  |                   |           |                        |                              |                         |           |

#### L.10 Coefficient on job access density by mode and dwelling type

# *M* Detailed assumptions for assessment of economic impacts

### Industry groupings

Industries are grouped into knowledge (which uses office space), population serving (which uses retail space), industrial (which uses industrial space) and health and education. Health and education space is not estimated, as a large part of this is government provided and is considered in cost estimates. The alignment of industries in the scenarios and the broader groupings for the purposes of considering non-residential space is shown in table M.1.

| Scenario industry                    | Included in<br>space<br>estimates | Broad category       | Broad category<br>used |
|--------------------------------------|-----------------------------------|----------------------|------------------------|
| Agriculture                          | No                                | NA                   | NA                     |
| Business & Government Services       | Yes                               | Knowledge            | Knowledge              |
| Construction                         | No                                | NA                   | NA                     |
| Hospitals                            | No                                | Health and education | NA                     |
| Leisure                              | Yes                               | Population serving   | Population serving     |
| Medical, Social & Community services | No                                | Health and education | NA                     |
| Retail Hospitality                   | Yes                               | Population serving   | Population serving     |
| School Education                     | No                                | Health and education | NA                     |
| Tertiary Education                   | No                                | Health and education | NA                     |
| Traditional Industrial               | Yes                               | Industrial           | Industrial             |

#### M.1 Industries in scenarios to broad categories of non-residential space

Source: CIE.

#### Floor space per job

Floor space per job is used to convert the job estimates to floor space requirements. The estimates used are shown in table M.2. The study adopts similar estimates to previous work for NSW Department of Environment and Planning in Sydney. The exception is that a lower estimate is used for population serving jobs to broadly calibrate with Victorian Valuer General data on the total value of commercial (including retail) property.
Note that in reality space per person will vary across areas depending on cost. For example, it would be expected that there would be higher floor space per job in outer suburbs and regional areas as compared to the inner city. The same benchmarks are used so that the value of new space is on a comparable basis wherever it is provided.

#### M.2 Floor space per job

|                      | City of Sydney<br>study | NSW DPE | This project |
|----------------------|-------------------------|---------|--------------|
|                      | m2/job                  | m2/job  | m2/job       |
| Health and education | 44.4                    | 40      | 40           |
| Industrial           | 93.9                    | 100     | 100          |
| Knowledge            | 22.7                    | 30      | 30           |
| Population serving   | 51.7                    | 55      | 25           |

Source: The CIE 2020, Western Sydney Place Based Infrastructure Compact, https://gsc-public-1.s3-ap-southeast-2.amazonaws.com/s3fs-public/appendix\_6\_-\_economic\_evaluation\_pic\_2.pdf?YI20Koda1ZmXFIXYZH3cXVDJurKoxcM.; The CIE;

## Cost of constructing floor space

Costs of construction used are shown in table M.3. These are based on previous estimates provided for a similar project in Sydney, escalated from 2020 to 2022 dollars using the ABS Producer Price Index for Non-residential building construction Victoria.

Yields are also shown in table M.3. These are based on the implied yields from the Victorian Valuer General's outcomes report for 2022, which has an annual value and a capital improved value, and yield data collected from commercial property providers.

A high density premium is applied to development in Inner Melbourne. This estimate is based on previous benchmarking work.

| Costs used           | Cost                      | Cost premium<br>for higher<br>density | Yield (nominal) | Yield (real) |
|----------------------|---------------------------|---------------------------------------|-----------------|--------------|
|                      | \$/m2 of gross floor area | Per cent                              | Per cent        | Per cent     |
| Health and education | 4,849                     | 0%                                    | 6%              | 3.4%         |
| Industrial           | 1,287                     | 0%                                    | 6%              | 3.4%         |
| Knowledge            | 4,937                     | 42%                                   | 6%              | 3.4%         |
| Population serving   | 3,634                     | 0%                                    | 6%              | 3.4%         |

#### M.3 Costs of construction

Source: CIE.

Additional land is only assumed for greenfield development. The shares of assumed greenfield are shown in table M.4.

| Area                             | Share Greenfield | High density<br>premium | Cost of additional greenfield land |
|----------------------------------|------------------|-------------------------|------------------------------------|
|                                  | Per cent         |                         | \$/m2                              |
| Inner Melbourne                  | 0%               | Yes                     | NA                                 |
| Middle Melbourne                 | 0%               | No                      | NA                                 |
| Regional Centres and Rural Areas | 100%             | No                      | 20                                 |
| Regional City                    | 95%              | No                      | 161                                |
| Outer Melbourne                  | 2%               | No                      | 692                                |
| Melbourne New Growth Area        | 100%             | No                      | 530                                |

#### M.4 Greenfield shares for new non-residential space

Source: CIE.

We have sought to cross check costs with data collated by the Victorian Building Authority on construction costs. However, the ranges across the building permits were so wide (see table M.5) we did not use this data. For example, the cost of public buildings is highly skewed, with the average cost being above the 75<sup>th</sup> percentile.

#### M.5 Cost estimates from the Victorian Building Authority 2022

|                     | Median | Average | 25 <sup>th</sup><br>percentile | 75 <sup>th</sup><br>percentile |
|---------------------|--------|---------|--------------------------------|--------------------------------|
|                     | \$/m2  | \$/m2   | \$/m2                          | \$/m2                          |
| Commercial          | 772    | 8 837   | 280                            | 2 312                          |
| Public Buildings    | 794    | 17 818  | 255                            | 3 836                          |
| Hospital/Healthcare | 4 462  | 7 822   | 1 472                          | 9 675                          |
| Retail              | 1 598  | 10 349  | 648                            | 3 552                          |
| Industrial          | 504    | 4 384   | 239                            | 1 275                          |

Note: Any development with a cost of less than \$100 000 was excluded.

Source: CIE based on building permits data from the Victorian Building Authority for 2022, https://www.vba.vic.gov.au/about/data.

For development that is not greenfield, there is an assumed churn rate — that is some amount of space has to be lost in order to redevelop more space. For example, if the churn rate is 25 per cent, then for each additional 100m2 of floor space, 25m2 of floor space is demolished and has to be rebuilt. The costs apply to the demolished space as well as the additional space, while the benefits apply only to the additional space.

We have assumed a 25 per cent churn rate across all types and all non-greenfield areas. Note that any churn rate is possible within the scenarios, depending on how focused the development is.

#### Lease rates used

The lease rates used are shown in table M.6. These are drawn from commercial property reports, but adjusted to be on the basis of m2 of pure lease (after costs) per m2 of gross floor area. Note that health and education is excluded from the analysis as costs enter the cost side of the model for these areas. Note that the lease rates are applied to much

broader regions than in the residential model, given the much lower quality of data and lack of sales data to construct spatial metrics.

#### M.6 Lease rates used for analysis

|                                     | Health and education      | Industrial                | Knowledge                 | Population<br>serving     |
|-------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                                     | \$/m2 gross floor<br>area | \$/m2 gross floor<br>area | \$/m2 gross floor<br>area | \$/m2 gross floor<br>area |
| Inner Melbourne                     | NA                        | 120                       | 450                       | 450                       |
| Middle Melbourne                    | NA                        | 100                       | 300                       | 350                       |
| Regional Centres and Rural<br>Areas | NA                        | 90                        | 200                       | 200                       |
| regional City                       | NA                        | 90                        | 250                       | 250                       |
| Outer Melbourne                     | NA                        | 100                       | 250                       | 300                       |
| Melbourne New Growth Area           | NA                        | 100                       | 250                       | 300                       |

Source: CIE.

Lease rates for industrial, office and retail space from various commercial property providers are shown in tables M.7 to M.9. The rates shown vary according to what they are measuring and type of space. The estimates for the model are net effective rents per m2 of gloss floor area. Metrics provided in property reports vary as follows:

- Gross face rents this is the amount a lease agreement states for rent plus outgoings (such as energy and cleaning)
- Net face rents this is the amount a lease agreement states for rent but does not include outgoings
- Gross effective rents this is the amount a lease agreement states for rent plus outgoings (such as energy and cleaning) less the amount of incentives that reduce the actual amount paid
- Net effective rents this is the amount a lease agreement states for rent not including outgoings (such as energy and cleaning) less the amount of incentives that reduce the actual amount paid

Note that the rates stated are per m2 of space that a tenant is actually leasing so excludes common areas. For places like shopping centres, the common areas will be a substantial part of overall gross floor area.

| Region                       | JLL              | Cushman<br>and<br>Wakefield | Cushman<br>and<br>Wakefield | Charter<br>Keck<br>Cramer | Charter<br>Keck<br>Cramer | Knight<br>Frank  | Knight<br>Frank  | CBRE             |
|------------------------------|------------------|-----------------------------|-----------------------------|---------------------------|---------------------------|------------------|------------------|------------------|
|                              | Dec-22           | Sep-22                      | Sep-22                      | NA                        | NA                        | Dec-22           | Dec-22           | Sep-22           |
|                              | Net face<br>rent | Net face<br>rent            | Net face<br>rent            | Net face<br>rent          | Net face<br>rent          | Net face<br>rent | Net face<br>rent | Net face<br>rent |
|                              | Prime            | Prime,<br><5000 SQM         | Prime,<br>>5000 SQM         | Prime                     | Secondary                 | Prime            | Secondary        | Super<br>prime   |
|                              | \$/m2            | \$/m2                       | \$/m2                       | \$/m2                     | \$/m2                     | \$/m2            | \$/m2            | \$/m2            |
| Melbourne – North            | 112              | 110                         | 95                          |                           |                           |                  |                  | 95               |
| Melbourne – South<br>East    | 120              | 130                         | 117.5                       | 90                        | 60                        |                  |                  | 120              |
| Melbourne – West             | 108              | 110                         | 100                         |                           |                           |                  |                  | 95               |
| Melbourne – East             |                  | 120                         | 115                         | 100                       | 70                        |                  |                  | 130              |
| Melbourne – City fringe      |                  |                             |                             | 135                       | 77.5                      |                  |                  |                  |
| Melbourne – North and West   |                  |                             |                             | 80                        | 57.5                      |                  |                  |                  |
| Melbourne                    |                  |                             |                             |                           |                           | 126              | 109              |                  |
| Melbourne – Inner<br>(prime) |                  |                             |                             |                           |                           |                  |                  | 130              |

#### M.7 Industrial lease rates

Source: JLL Australian Industrial Market Overview, 4q22, https://www.jll.com.au/en/trends-and-insights/research/australian-

industrial-market-overview-4q22; Cushman and Wakefield, Market beat,

https://www.cushmanwakefield.com/en/australia/insights/melbourne-marketbeat; Charter Keck Kramer, The current state of play for commercial property markets Melbourne, https://charterkc.com.au/valuations/the-current-state-of-play-commercial-property-markets-melbourne/; Knight Frank; CBRE.

#### M.8 Office lease rates

| Region                       | лі                      | Cushman and<br>Wakefield | Charter<br>Keck<br>Cramer | Knight Frank          | CBRE                  |
|------------------------------|-------------------------|--------------------------|---------------------------|-----------------------|-----------------------|
|                              | Dec-22                  | Dec-22                   | Not clear                 | Dec-22                | Sep-22                |
|                              | Gross effective<br>rent | Net effective<br>rent    | Net face<br>rent          | Net effective<br>rent | Net effective<br>rent |
|                              | Prime                   | Prime                    | Prime                     | Prime                 | Prime                 |
|                              | \$/m2                   | \$/m2                    | \$/m2                     | \$/m2                 | \$/m2                 |
| Melbourne CBD                | 500                     | 410                      | 700                       | 409                   | 399                   |
| Melbourne City Fringe        | 450                     |                          | 450                       | 315                   |                       |
| Melbourne South East Suburbs | 360                     |                          |                           |                       |                       |
| Suburban                     |                         |                          | 390                       |                       |                       |
| St Kilda Rd                  |                         |                          |                           | 342                   |                       |
| Metro Inner East             |                         |                          |                           | 360                   |                       |
| Metro Outer East             |                         |                          |                           | 296                   |                       |
| Metro South East             |                         |                          |                           | 195                   |                       |
| Metro North and West         |                         |                          |                           | 214                   |                       |

Source: JLL ; Cushman and Wakefield, Market beat, https://www.cushmanwakefield.com/en/australia/insights/melbournemarketbeat; Charter Keck Kramer, The current state of play for commercial property markets Melbourne,

https://charterkc.com.au/valuations/the-current-state-of-play-commercial-property-markets-melbourne/; Knight Frank; CBRE.

| Region        | Туре                  | Charter Keck<br>Cramer | CBRE          |
|---------------|-----------------------|------------------------|---------------|
|               |                       | Not clear              | Sep-22        |
|               |                       | Net face rent          | Net face rent |
|               |                       | \$/m2                  | \$/m2         |
| Melbourne CBD | CBD                   | 3500                   | 7250          |
| Melbourne     | Regional centres      | 1325                   | 1445          |
| Melbourne     | Sub-regional centres  | 975                    |               |
| Melbourne     | Neighbourhood centres | 625                    |               |
| Melbourne     | Prime strips          | 1075                   |               |
| Melbourne     | Large format          | 240                    | 300           |

#### M.9 Retail lease rates

Source: Charter Keck Kramer, The current state of play for commercial property markets Melbourne,

https://charterkc.com.au/valuations/the-current-state-of-play-commercial-property-markets-melbourne/; CBRE.

The lease rates and m2 per job used have been broadly adjusted to give alignment between overall Victorian Valuer General estimates of capital improved value for industrial and commercial property. A comparison across region types is shown in table M.10. Chart M.11 shows a comparison for industrial value for each LGA and chart M.12 shows a comparison for commercial (including retail) for each LGA.

- The benchmarks perform relatively well, given the number of assumptions made to get to them.
- Industrial somewhat overstates value in Melbourne City, likely because of much lower metres per job in Melbourne City industrial areas.

# M.10 Comparison of Valuer General and model capital improved value estimates by region type

|                | Inner<br>Melbourne | Middle<br>Melbourne | Regional<br>Centres and<br>Rural Areas | Regional<br>City | Outer<br>Melbourne | Melbourne<br>New Growth<br>Area | Total   |
|----------------|--------------------|---------------------|----------------------------------------|------------------|--------------------|---------------------------------|---------|
|                | \$B                | \$B                 | \$B                                    | \$B              | \$B                | \$B                             | \$B     |
| Commercial     |                    |                     |                                        |                  |                    |                                 |         |
| Model          | 125 870            | 72 245              | 17 450                                 | 15 070           | 41 053             | 4 067                           | 275 755 |
| Valuer General | 115 301            | 61 940              | 21 624                                 | 16 007           | 38 456             | 3 305                           | 256 632 |
| Industrial     |                    |                     |                                        |                  |                    |                                 |         |
| Model          | 22 497             | 40 596              | 13 104                                 | 8 0 0 8          | 39 445             | 2 284                           | 125 934 |
| Valuer General | 12 381             | 43 363              | 13 388                                 | 5 977            | 47 320             | 4 000                           | 126 429 |

Note: The model uses a constant assumptions of m2 per job so would be expected to deviate in inner areas in particular. *Data source:* The CIE and Valuer General 2022 Outcome Summary, https://www.land.vic.gov.au/valuations/resources-and-reports/revaluation-2020-outcomes.



# M.11 Capital improved value for Industrial property – model versus Valuer General estimates

Note: The outlier to the top left is Melbourne City and the top right is Dandenong.

Data source: The CIE and Valuer General 2022 Outcome Summary, https://www.land.vic.gov.au/valuations/resources-and-reports/revaluation-2020-outcomes.



# M.12 Capital improved value for Commercial property – model versus Valuer General estimates

Note: The outlier to the right is Melbourne City.

Data source: The CIE and Valuer General 2022 Outcome Summary, https://www.land.vic.gov.au/valuations/resources-and-reports/revaluation-2020-outcomes.



#### M.13 Capital improved value for Commercial property – model versus Valuer General estimates excluding Melbourne City

Note: The outlier to the right is Stonnington..

Data source: The CIE and Valuer General 2022 Outcome Summary, https://www.land.vic.gov.au/valuations/resources-and-reports/revaluation-2020-outcomes.

## Impacts of accessibility on willingness to pay

CIE has previously found that accessibility to jobs and population can be a driver of commercial and industrial land values. In Sydney, a 1 per cent increase in accessibility to jobs (i.e. job density) was found to increase commercial land values by 0.992 per cent and to increase industrial land values by 0.583 per cent.<sup>190</sup> Access to the labour force — i.e. accessibility to people<sup>191</sup> — was not statistically significant for commercial property but was for industrial. The statistical significance of population accessibility was more sensitive than job accessibility, with prior econometrics having found a statistically significant relationship.

For this project, data from the Valuer General on sales transactions and land values was not available to estimate Melbourne specific impacts.

Given the paucity of data, we apply the factors estimated for Sydney to property values for Melbourne. The Sydney values were based on land, so the impacts are reduced by the share of land value in property value, based on Victorian Valuer General averages.

<sup>190</sup> The CIE 2020, Western Sydney Place Based Infrastructure Compact, https://gsc-public-1.s3-ap-southeast-2.amazonaws.com/s3fs-public/appendix\_6\_-\_economic\_evaluation\_pic\_2.pdf?YI2OKoda1ZmXFIXYZH3cXVDJurKoxcM.

<sup>&</sup>lt;sup>191</sup> Accessibility from public transport was statistically significant rather than by car.

### M.14 Impact of accessibility on willingness to pay

|                                                      | Commercial                       | Industrial                       |
|------------------------------------------------------|----------------------------------|----------------------------------|
|                                                      | Impact of 1 per cent improvement | Impact of 1 per cent improvement |
| Accessibility to other jobs (by car)                 | 0.992                            | 0.583                            |
| Accessibility to labour market (by public transport) | 0.000                            | 0.217                            |

Source: The CIE 2020, Western Sydney Place Based Infrastructure Compact, https://gsc-public-1.s3-ap-southeast-2.amazonaws.com/s3fs-public/appendix\_6\_-\_economic\_evaluation\_pic\_2.pdf?YI2OKoda1ZmXFIXYZH3cXVDJurKoxcM

www.TheCIE.com.au

## N Measuring GHG emissions

## **Operational emissions**

Measuring operational emissions for each scenario requires the following pieces of information:

- Total energy demand in the scenario. This will be determined by
  - the dwelling types being constructed
  - the number of new dwellings in each climate zone, and
  - the number of people living in those dwellings (occupancy rates)
- Emissions intensity of energy use. That is, how many kilograms of CO2 or CO2 equivalent gas is released for each unit of energy consumed

Once these elements have been established, they are multiplied together (adjusting for unit changes) to get estimates for total tonnes of CO2-equivalent GHG released.

#### Energy emissions intensity

Emissions associated with one unit of energy consumption need to be calculated separately for electricity, gas and firewood.

Emissions from electricity change dramatically over time as the grid decarbonises.

Forecasts of electrical emissions intensity to 2050 were taken from the 2022 Integrated Systems Plan from AEMO.<sup>192</sup> These emissions intensity forecasts align closely to Victorian government targets for renewable energy by 2035. Chart N.1 shows this change over time.

By 2036 electricity drawn from the grid is almost entirely decarbonised. This means that differences in electricity use across scenarios, either from buildings or from vehicles, will not have much of an impact on total emissions.

Further, differences between 2021 and 2036 are much more impactful than differences between 2036 and 2056.

192 AEMO 2022 Integrated Systems Plan, Generation outlook, https://aemo.com.au/en/energy-systems/major-publications/integrated-system-planisp/2022-integrated-system-plan-isp, accessed 14 July 2023



#### N.1 Electrical emissions intensity over time

Data source: AEMO 2022 ISP.

Estimates for electricity intensity for gas and firewood were drawn from the DCCEEW report on GHG accounts factors.<sup>193</sup> It was assumed that the emissions intensity of both gas and firewood stays constant over time (table N.2).

#### N.2 Emissions intensity for gas and firewood

|                                       | C02         | CH4         | N20         |
|---------------------------------------|-------------|-------------|-------------|
|                                       | kg CO2-e/GJ | kg CO2-e/GJ | kg CO2-e/GJ |
| Natural gas distributed in a pipeline | 51.4        | 0.1         | 0.03        |
| Dry wood                              | 0           | 0.1         | 1.1         |

Source: DCCEEW 2023.

#### Energy demand

The amount of **energy used per person** depends partly on the climate in which the building is located, and partly on the energy efficiency of the building itself. Climates with more extreme temperatures are associated with higher energy used per person, and the better insulated a building is, the less energy used.

In each scenario, we know the number of new dwellings in each climate zone, grouped into:

- Detached dwellings
- Attached dwellings
- Low rise apartments

<sup>193</sup> DCCEEW 2023, National Greenhouse Accounts Factors,

https://www.dcceew.gov.au/climate-change/publications/national-greenhouse-accounts-factors-2022, accessed 14 July 2023

- Medium rise apartments
- High rise apartments
- Other

Due to data availability, it was necessary to group some of these categories together. We used two final categories, using NCC building classifications.<sup>194</sup>

- Detached dwellings, attached dwellings and other were classified as class 1
- Low rise apartments, medium rise apartments and high rise apartments were classified as class 2

Table N.3 shows the energy demand over a year in each climate zone for the two building classes.<sup>195</sup> These numbers are based on data provided by ABCB and ACIL Allen, drawn from analysis underpinning the NCC 2022 residential building energy efficiency decision regulatory impact statement.<sup>196</sup>

Class 1 and class 2 dwellings have very similar energy use per household. However, table N.4 shows that class 2 dwellings have substantially higher energy demand per person, as occupancy rates in class 2 dwellings are lower on average (see table N.11).

In these tables, we report electricity drawn from the grid, as opposed to total energy, which may include energy drawn from private solar panels. Solar energy is excluded as it does not produce emissions.

|                           | Climate zone 4 | Climate zone 6 | Climate zone 7 |
|---------------------------|----------------|----------------|----------------|
|                           | MJ per year    | MJ per year    | MJ per year    |
| Class 1                   |                |                |                |
| Electricity from the grid | 10 720         | 11 843         | 12 029         |
| Gas                       | 7 492          | 9 177          | 9 543          |
| Firewood                  | 538            | 986            | 9 543          |
| Total                     | 18 750         | 22 006         | 22 818         |
| Class 2                   |                |                |                |
| Electricity from the grid | 11 134         | 11 904         | 13 526         |
| Gas                       | 7 599          | 9 309          | 9 628          |
| Firewood                  | 0              | 0              | 0              |
| Total                     | 18 733         | 21 212         | 23 153         |

#### N.3 Total yearly energy use per dwelling

Note: Data was not provided on energy demand for class 2 buildings in climate zone 4. Instead, this was calculated assuming the ratio of energy use between climate zones 4 and 6 is the same for class 1 and class 2 dwellings. Source: CIE, based on data provided by ABCB and ACIL Allen.

<sup>194</sup> See https://www.abcb.gov.au/sites/default/files/resources/2022/UTNCC-Buildingclassifications.PDF, accessed June 14, 2023

<sup>195</sup> Climate zone 8 which represent the top of mountains in Victoria, was excluded from our analysis, as the housing model has no new dwellings being added to climate zone 8 in Victoria

<sup>196</sup> https://abcb.gov.au/ncc-2022-residential-energy-efficiency-final-decision-ris, accessed June 14,2023

|             | Climate zone 4 | Climate zone 6 | Climate zone 7 |
|-------------|----------------|----------------|----------------|
|             | MJ/year/person | MJ/year/person | MJ/year/person |
| Class 1     |                |                |                |
| Electricity | 4 870          | 4 801          | 4 880          |
| Gas         | 3 403          | 3 720          | 3 871          |
| Firewood    | 244            | 400            | 506            |
| Total       | 8 517          | 8 920          | 9 257          |
| Class 2     |                |                |                |
| Electricity | 6499           | 6230           | 7884           |
| Gas         | 4436           | 4872           | 5612           |
| Firewood    | 0              | 0              | 0              |
| Total       | 10935          | 11102          | 13495          |

#### N.4 Total yearly energy use per person

Note: Data was not provided on energy demand for class 2 buildings in climate zone 4. Instead, this was calculated assuming the ratio of energy use between climate zones 4 and 6 is the same for class 1 and class 2 dwellings.

Source: CIE, based on data provided by ABCB and ACIL Allen.

The result that class 2 dwellings use more energy per person than a class 1 dwelling is perhaps surprising, considering that often houses are cited as having higher energy use per person than an apartment (see for instance Rickwood 2009<sup>197</sup>).

The driver of this result is the new energy efficiency standards for Victoria, in which apartments are given a higher allowance for energy than a house of the same size. Using the NCC Whole of Home Calculator tool<sup>198</sup>, we can see that a 150 square meter house in climate zone 6 has a net energy usage allowance of 2.4, while a 150 square meter apartment has net energy usage allowance of 3.4.

Using average house and apartment sizes (see the end of this appendix), we find that an average house has 25 per cent higher energy usage allowance. However, a house in climate zone 6 has on average about 30 per cent more people than an apartment (see occupancy rates section of this appendix), meaning that **under new energy efficiency standards, energy usage allowance per person is higher for apartments**.

To model the electrification process, we assumed gas use decreases over time, being replaced by additional electricity use (chart N.5).

Total gas consumption was multiplied by an index calibrated to match AEMO's forecasted residential and commercial annual gas consumption in the 'orchestrated step change' scenario from their GSOO 2023 publication<sup>199</sup>. The forecast ends in 2042, so to

Rickwood, Peter. (2009). Residential Operational Energy Use. Urban Policy and Research.
 27. 10.1080/08111140902950495

<sup>198</sup> NCC 2023, https://www.abcb.gov.au/resource/calculator/ncc-whole-home-calculator, Accessed 1 August 2023

<sup>199</sup> AEMO 2023, http://forecasting.aemo.com.au/Gas/AnnualConsumption/Total, Accessed 14 July 2023

extend the index to 2056, a linear forecast was used, with no gas use being achieved in 2054. Chart O.5 shows the index applied to gas.



N.5 Decrease in gas consumption over time

#### Treatment of solar PV

One difference between class 1 and class 2 dwellings under the most recent energy efficiency standards is that more class 1 dwellings have solar panels. Under the 2022 residential energy efficiency regulations, each class 1 dwelling in Victoria is assumed to have at least some PV use. On the other hand, no class 2 dwelling is assumed to use any solar power (see table N.6).

#### N.6 New dwelling type distribution

|         | High PV use | Moderate PV use | Moderate PV use<br>and a pool | No PV use |
|---------|-------------|-----------------|-------------------------------|-----------|
| Class 1 | 27.3%       | 70.4%           | 2.3%                          | 0%        |
| Class 2 | 0%          | 0%              | 0%                            | 100%      |

Note: Dwellings with a pool were included because they have a substantially higher energy use than other dwelling types. Source: ABCB and ACIL Allen.

In our analysis, we assume that these ratios stay constant for new dwellings built over time, though we add a sensitivity to test the impact of all class 2 dwellings having moderate PV use.

The difference between total electricity and electricity drawn from the grid across each climate zone is shown in table N.7. We show a sensitivity in which total electricity is used for calculating emissions rather than electricity from the grid. This scenario would be consistent with an assumption that overall grid decarbonisation is independent of the rate of residential solar PV uptake.

Data source: CIE based on AEMO.

Instead, for our central estimates, we assume that a higher uptake of residential PV will result in faster overall decarbonisation across the state. This allows us to make meaningful comparisons across scenarios.

|                |                   | Class 1       |                   |               |  |  |
|----------------|-------------------|---------------|-------------------|---------------|--|--|
|                | Total electricity | From the grid | Total electricity | From the grid |  |  |
|                | MJ/year           | MJ/year       | MJ/year           | MJ/year       |  |  |
| Climate zone 4 | 14550             | 10720         | 10775             | 10775         |  |  |
| Climate zone 6 | 15556             | 11843         | 11904             | 11904         |  |  |
| Climate zone 7 | 16421             | 12029         | 13526             | 13526         |  |  |

#### N.7 Impact of PV on electricity drawn from the grid

Source: CIE, based on data provided by ABCB and ACIL Allen.

#### Number of new dwellings

The number of new dwellings constructed in each climate zone across each of the five scenarios was drawn from the housing model. To make comparisons across scenarios clearer, and to maintain consistent with our measurement approach for embodied emissions (see below), we exclude operational emissions from the existing housing stock.

To avoid all new dwellings being built at the same time in 2036 and 2056, the total new buildings at 2036 were spread evenly between 2022 and 2036, and the total new buildings at 2056 were spread evenly between 2037 and 2056.

#### N.8 Number of new dwellings by class and scenario

|            | 2021 to 2036  | 2036 to 2056  | Total         |
|------------|---------------|---------------|---------------|
|            | No. dwellings | No. dwellings | No. dwellings |
| Class 1    |               |               |               |
| Scenario 1 | 407,907       | 482,599       | 890,506       |
| Scenario 2 | 522,458       | 581,340       | 1,103,798     |
| Scenario 3 | 608,447       | 791,378       | 1,399,825     |
| Scenario 4 | 570,803       | 737,319       | 1,308,123     |
| Scenario 5 | 589,114       | 870,107       | 1,459,221     |
| Class 2    |               |               |               |
| Scenario 1 | 313,345       | 602,852       | 916,197       |
| Scenario 2 | 198,793       | 494,084       | 692,878       |
| Scenario 3 | 112,805       | 296,090       | 408,895       |
| Scenario 4 | 150,448       | 350,149       | 500,598       |
| Scenario 5 | 132,138       | 217,361       | 349,500       |

Source: CIE.

Because emissions intensity is so low beyond 2036, results for operational (and embodied) energy are primarily driven by new dwellings added from 2021 to 2036. In this time, scenario 3 has the highest number of class 1 dwellings, even above scenario 5, which has the highest total number of class 1 dwellings. Scenario 1 has the fewest class 1 dwellings in every time period.

Once constructed, each new dwelling will contribute towards total operational energy every year until it is demolished. We assume that no new buildings are demolished before 2056. This means that every year, the total emissions are determined by the total number of new buildings constructed between 2021 and that year, and the emissions factor for that year.

#### **Occupancy** rates

To get to an estimate of total energy use for each scenario, we also need to know how the occupancy rates (on average, the number people living in a dwelling) for each dwelling changes over time. Estimates for average occupancy rates were obtained using data on new dwellings and population in 2036 and 2056 drawn from the housing model<sup>200</sup>.

These occupancy rates were used to find forecasted occupancy rates for scenario 1, climate zone 6. Next, the occupancy rates from the housing model were used to find relativities across climate zones and across scenarios for class 1 and class 2 dwellings. These are shown in tables N.9 and N.10 respectively. All other occupancy rates were then calculated by multiplying scenario 1, climate zone 6 occupancy rates (shown in table N.11) by the relevant relativities<sup>201</sup>.

Between scenarios, scenario 1 generally has the highest average occupancy rates, with high rates across both class 1 and class 2 dwellings. Scenario 5 has the lowest occupancy rate for class 1 and the highest for class 2. This is due in part to so few new class 2 dwellings being built in scenario 5. Scenario 1 has relatively high occupancy rates in both dwelling classes, which ultimately contributes towards its high emissions from buildings relative to other classes.

| Climate zone   | 2021 | 2036 | 2056 |
|----------------|------|------|------|
| Class 1        |      |      |      |
| Climate zone 4 | 0.89 | 0.83 | 0.82 |
| Climate zone 6 | 1.00 | 1.00 | 1.00 |
| Climate zone 7 | 1.00 | 0.96 | 0.95 |

#### N.9 Change in occupancy rates relative to climate zone 6

<sup>200</sup> A regression was run for 2036 and 2056 where the dependent variable was the population and the independent variable was the number of dwellings, controlling for building class and climate zone.

201 On top of this, we assumed that all change in average occupancy rates is achieved through changes in the occupancy of new dwellings. This means that an increase in overall occupancy rates can only be achieved by a larger increase in occupancy rates for new dwellings, with no change for existing stock. Finally, an adjustment was made to ensure that the implied added population remained the same across all scenarios.

| Climate zone   | 2021 | 2036 | 2056 |
|----------------|------|------|------|
| Class 2        |      |      |      |
| Climate zone 4 | 0.90 | 0.96 | 1.00 |
| Climate zone 6 | 1.00 | 1.00 | 1.00 |
| Climate zone 7 | 0.90 | 1.05 | 0.96 |

Source: CIE.

#### N.10 Change in occupancy rates relative to scenario 1

| Scenario     | 2021 | 2036 | 2056 |
|--------------|------|------|------|
| Class 1      |      |      |      |
| Scenario 1   | 1.00 | 1.00 | 1.00 |
| Scenario 2   | 1.00 | 1.00 | 0.99 |
| Scenario 3   | 1.00 | 1.00 | 1.01 |
| Scenario 4   | 1.00 | 0.99 | 0.98 |
| Scenario 5   | 1.00 | 0.97 | 0.93 |
| Class 2      |      |      |      |
| Scenario 1   | 1.00 | 1.00 | 1.00 |
| Scenario 2   | 1.00 | 0.97 | 0.99 |
| Scenario 3   | 1.00 | 0.92 | 0.91 |
| Scenario 4   | 1.00 | 0.99 | 0.98 |
| Scenario 5   | 1.00 | 1.05 | 1.19 |
| Source: CIE. |      |      |      |

#### N.11 Forecasted occupancy rates for scenario 1 climate zone 6

|         | 2021                    | 2036                    | 2056                    |
|---------|-------------------------|-------------------------|-------------------------|
|         | No. people per dwelling | No. people per dwelling | No. people per dwelling |
| Class 1 | 2.47                    | 2.63                    | 2.54                    |
| Class 2 | 1.91                    | 1.82                    | 1.96                    |

Source: CIE.

## Embodied emissions

Calculating embodied emissions requires two components:

- The total volume of dwellings constructed in each scenario, determined by:
  - the number of new dwellings, and
  - the average floor area of each new dwelling
- GHG emissions factors for each square metre of construction, by dwelling type

As with operational emissions, these numbers are multiplied to get estimates for total tonnes of CO2-equivalent gasses.

Different materials used in construction will result in different emissions being produced. A dwelling that is made from predominantly timber and brick will result in far less GHG emission than a dwelling made from concrete and steel. This is because the production processes associated with concrete and steel are much more emissions intensive than other materials<sup>202</sup>.

With operational emissions, we sorted new buildings into either class 1 or class 2. However, for embodied emissions, it is important to be able to distinguish between different types of dwelling structure within these classes, and so the original building types were kept separate.

**Emissions factors** for each building type were sourced from Thinkstep-ANZ and GBCA (2021)<sup>203</sup>. They report embodied emissions rates per square metre of building construction separately for class 1 and class 2 dwellings. They also have forward estimates for the rate at which embodied emissions decline over time<sup>204</sup>.

However, while their class 1 dwelling embodied emissions estimates are based on a representative sample of Victorian class 1 dwellings, class 2 estimates are based off a single type of apartment building. Embodied emission rates increase as the height of the building increases, as more material is needed in the foundation and other stabilising components<sup>205</sup>.

To account for this, we drew on a separate study of Australian embodied emissions by Prasad et al. which has separate estimates for medium and high rise apartments<sup>206</sup>. To get our embodied emission rate for high rise apartments, we applied the ratio of high to medium rise apartments found in Prasad et al. to the thinkstep-anz class 2 estimate<sup>207</sup>.

<sup>204</sup> Forward estimates are given for an average of class 1 and class 2 emissions. We assumed that emissions factors decrease for each dwelling class at the same rate. This is a fairly uncertain assumption, and so should be treated with caution.

205 Du, Peng & Wood, Antony & Stephens, Brent & Song, Xiaoyu. (2015). Life-Cycle Energy Implications of Downtown High-Rise vs. Suburban Low-Rise Living: An Overview and Quantitative Case Study for Chicago. Buildings. 5. 1003-1024. 10.3390/buildings5031003.

206 Prasad, Deo & Dave, Malay & Kuru, Aysu & Oldfield, Philip & Ding, Lan & Noller, Caroline & He, Bao-Jie. (2021). Race to Net Zero Carbon: A climate emergency guide for new and existing buildings in Australia,

https://www.researchgate.net/publication/356717453\_Race\_to\_Net\_Zero\_Carbon\_A\_climat e\_emergency\_guide\_for\_new\_and\_existing\_buildings\_in\_Australia

207 We chose to use thinkstep-anz over Prasad et al. for our point estimate because Prasad used an input-output (IO) method rather than the process-based method used by thinkstep-anz. IO methods sometimes yield estimates which are much larger than is supported by the emissions factors of the actual building materials, and so are generally less favoured in Australia.

<sup>202</sup> DCCEEW 2022. More timber in construction to lower emissions. https://www.energy.gov.au/news-media/news/more-timber-construction-lower-emissions, accessed 14 July 2023

<sup>203</sup> GBCA and thinkstep-anz (2021). Embodied Carbon and Embodied Energy in Australia's Buildings, https://www.thinkstep-anz.com/resrc/reports/embodied-carbon-and-embodiedenergy-in-australias-buildings-gbca/

|                      | 2021       | 2025       | 2030       | 2040       | 2056       |
|----------------------|------------|------------|------------|------------|------------|
|                      | kg CO2e/m2 |
| Class 1              | 192        | 177        | 162        | 147        | 131        |
| Class 2 low/mid rise | 330        | 308        | 288        | 267        | 246        |
| Class 2 high rise    | 560        | 539        | 518        | 497        | 418        |

#### N.12 Embodied emissions intensity for different dwelling types

Source: CIE analysis based on GBCA and Thinkstep-anz (2021) and Prasad et al. (2021).

Like operational emissions, calculating embodied emissions requires knowing the total **number of new dwellings** constructed each year. However, unlike operational emissions, rather than needing the net new dwellings (the final number of new dwellings), operational emissions requires knowing gross new dwellings (the total number of buildings added, including buildings added to replace demolished buildings).

In each scenario, the number of buildings demolished changes depending on how much infill development is occurring. Higher density housing requires demolishing more units, and thus more buildings added in total to reach the same net new dwellings. Gross new dwellings by scenario are shown in chart N.13. It is highest for the compact city scenario, and lowest for the distributed state scenario.



#### N.13 Gross new dwelling construction by scenario

Data source: CIE.

The **average floor area** for each dwelling is calculated based on the occupancy rate. We assume that floor space per person will stay constant over time. For instance, if the number of people living in a house increases from 2 to 3 on average, we increased the embodied emissions generated by that house by 50 per cent.

Table N.14 shows the initial average floor areas. These were taken from ABS building activity data from 2023<sup>208</sup>.

#### N.14 Average floor size by dwelling type

|            | Average floor size |
|------------|--------------------|
|            | m2                 |
| Houses     | 240.8              |
| Townhouses | 170.6              |
| Apartments | 114.9              |

Source: ABS Building activity 2023.

<sup>208</sup> ABS April 2023, Average Floor Area of New Residential Dwellings, https://www.abs.gov.au/articles/average-floor-area-new-residential-dwellings

## O Estimating changes in land take

## Urban Area definition

#### 0.1 Meshblock included as Urban Area by Functional Urban Area

| MB_CAT21           | Regional<br>City | Regional<br>Centres and<br>Rural Areas | Inner<br>Melbourne | Middle<br>Melbourne | Outer<br>Melbourne | Melbourne<br>New Growth<br>Area |
|--------------------|------------------|----------------------------------------|--------------------|---------------------|--------------------|---------------------------------|
| Education          | $\checkmark$     | ✓                                      | $\checkmark$       | ✓                   | $\checkmark$       | ✓                               |
| Commercial         | $\checkmark$     | $\checkmark$                           | $\checkmark$       | ✓                   | $\checkmark$       | ✓                               |
| Residential        | $\checkmark$     | $\checkmark$                           | $\checkmark$       | $\checkmark$        | $\checkmark$       | ✓                               |
| Parkland           | √a               | √a                                     | $\checkmark$       | $\checkmark$        | $\checkmark$       | ✓                               |
| Water              | ×                | ×                                      | ×                  | ×                   | ×                  | ×                               |
| Primary Production | ×                | ×                                      | ×                  | ×                   | ×                  | ×                               |
| Other              | ✓                | $\checkmark$                           | ✓                  | ✓                   | $\checkmark$       | ✓                               |
| Industrial         | $\checkmark$     | $\checkmark$                           | $\checkmark$       | $\checkmark$        | $\checkmark$       | $\checkmark$                    |
| Hospital/Medical   | $\checkmark$     | $\checkmark$                           | $\checkmark$       | $\checkmark$        | $\checkmark$       | ✓                               |
| Transport          | ✓                | $\checkmark$                           | ✓                  | ✓                   | $\checkmark$       | ✓                               |
| SHIPPING           | ×                | ×                                      | ×                  | ×                   | ×                  | ×                               |
| MIGRATORY          | ×                | ×                                      | ×                  | ×                   | ×                  | ×                               |
| OFFSHORE           | ×                | ×                                      | ×                  | ×                   | ×                  | ×                               |
| NOUSUALRESIDENCE   | ×                | ×                                      | ×                  | ×                   | ×                  | ×                               |

<sup>a</sup> Includes only parkland which is not defined as conservation or reserves.

Source: ABS Meshblock 2021

## **Objective of the analysis**

We have estimated the amount of land take associated with development in greenfield areas. Land take refers to the amount of land newly used for dwellings, infrastructure and employment purposes.

In greenfield areas, land take for dwellings, infrastructure and employment purposes comes at the expense of land used for agriculture or sometimes natural/semi-natural open space.

We do not estimate any changes to land take in established (i.e. non-greenfield) areas. Land in established areas is already being used for some purpose, and development will come at the expense of land already used for dwellings, infrastructure and employment purposes. While there is some natural/semi-natural open space, it is more limited in established areas and unlikely to be developable. Hence, it's reasonable to assume that there is no change to land take for dwelling, infrastructure or employment purposes in established areas.

## Land take by dwellings

#### Data sources

#### State of the Land greenfield single dwelling lot size

The Urban Development Institute of Australia (UDIA) *State of the Land 2023* publication<sup>209</sup> states that the median lot size of greenfield single dwellings in 2022 is 352 square metres.<sup>210</sup> This includes both detached and attached single dwellings, but excludes multi-unit dwellings such as apartments.

#### Distribution of site area per dwelling from ABS data

Data about site area per dwelling by type of dwelling is available from the Australian Bureau of Statistics *Land and Housing Supply Indicators*, publication.<sup>211</sup> Dwellings are classified based on the Functional Classification of Buildings (FCB). This data relies on counting the number of building approvals, the number of dwellings approved, and size of each lot for which there is an approval. The publication reports the number of dwellings that are in lots of different size bands and by SA2. We have classified SA2s into regions such as Inner Melbourne and Melbourne new growth areas. We convert the number of dwellings in each size band to an average lot size per dwelling (table O.2).<sup>212</sup>

The site area per dwelling for all areas looks reasonable, except for Regional Centres and Rural Areas, for which an average site area per dwelling of 1217m<sup>2</sup> seems unrepresentative of typical greenfield development. This may be due to a high

<sup>209</sup> UDIA, 2023, State of the Land 2023: National Residential Greenfield and Apartment Market Study, released March 2023, available at: https://udia.com.au/wpcontent/uploads/2023/03/State-of-the-Land-2023\_Digital-Version-FINAL.pdf

<sup>&</sup>lt;sup>210</sup> UDIA (2023), p.62.

<sup>211</sup> Australian Bureau of Statistics, 2022, Land and Housing Supply Indicators,

<sup>212</sup> Since site area per dwelling in this publication is reported in bands, we assume the average site area within each band, and then calculate a weighted average site area per dwelling based on the number of dwellings of each size. For example, lots between 200-400m2 are assumed to be 250m2 on average. To illustrate the calculation, there are 151 apartments in regional cities that are in lots under 200m2 per dwelling (assume 150m2 on average) and 22 on lots between 200-400m2 per dwelling. This implies a weighted average site area per dwelling of 163m2 per dwelling for apartments in regional cities.

representation of knock-down-rebuilds in these areas, which would be existing lots with large site areas per dwelling. In contrast, we are seeking to apply these parameters to estimate the size of new dwellings, which would be on rezoned lots and likely to have smaller site area per dwelling.

# 0.2 Average site area per new dwelling in *Land and Housing Supply* 2022 publication

| Region category                  | Detached | Attached | Apartment | All types |
|----------------------------------|----------|----------|-----------|-----------|
|                                  | Sqm      | Sqm      | Sqm       | Sqm       |
| Inner Melbourne                  | 472      | 195      | 150       | 180       |
| Middle Melbourne                 | 558      | 237      | 152       | 289       |
| Outer Melbourne                  | 743      | 294      | 152       | 530       |
| Melbourne New Growth Area        | 372      | 230      | 150       | 364       |
| Regional City                    | 678      | 309      | 163       | 627       |
| Regional Centres and Rural Areas | 1217     | 302      | N/A       | 1084      |

Source: ABS Land and Housing Supply Indicators 2022, CIE.

#### UDP Regional Greenfield 2022 rezoned lot size

As a cross-check on the site area per dwelling for Regional Centres and Rural Areas, we have estimated the average size of rezoned regional lots from data provided together with the UDP Regional Greenfield 2022 report. Only some of these regions are regional centres or rural areas rather than regional cities, namely:

- Baw Baw,
- Macedon Ranges
- Latrobe
- Surf Coast

The average size of rezoned lots in regional centres or rural areas, excluding Surf Coast which has very little development (95 lots), is 645 square metres. If all regional areas are considered, including regional cities and Surf Coast, the average rezoned lot size is 645 square metres (table O.3).

#### 0.3 Average size of rezoned regional lots

| Region          | Less than<br>300m2<br>(=250m2) | 300-499m2<br>(=400m2) | 500-649m2<br>(=575m2) | 650-799m2<br>(=725m2) | 800m2 or<br>more<br>(=900m2) | Average<br>across all<br>bands |
|-----------------|--------------------------------|-----------------------|-----------------------|-----------------------|------------------------------|--------------------------------|
|                 | Number                         | Number                | Number                | Number                | Number                       | sqm                            |
| Greater Geelong | 1 513                          | 6 986                 | 2 630                 | 516                   | 412                          | 450                            |
| Ballarat        | 219                            | 2 627                 | 3 253                 | 628                   | 281                          | 526                            |
| Greater Bendigo | 44                             | 289                   | 908                   | 848                   | 319                          | 644                            |
| Macedon Ranges  | 48                             | 95                    | 239                   | 219                   | 254                          | 672                            |
| Baw Baw         | 94                             | 248                   | 1 363                 | 768                   | 454                          | 640                            |

| Region                                                    | Less than<br>300m2<br>(=250m2) | 300-499m2<br>(=400m2) | 500-649m2<br>(=575m2) | 650-799m2<br>(=725m2) | 800m2 or<br>more<br>(=900m2) | Average<br>across all<br>bands |
|-----------------------------------------------------------|--------------------------------|-----------------------|-----------------------|-----------------------|------------------------------|--------------------------------|
|                                                           | Number                         | Number                | Number                | Number                | Number                       | sqm                            |
| Latrobe                                                   | 181                            | 111                   | 492                   | 556                   | 325                          | 642                            |
| Mildura                                                   | 66                             | 181                   | 464                   | 423                   | 167                          | 625                            |
| Horsham                                                   | 20                             | 50                    | 36                    | 136                   | 139                          | 707                            |
| Surf Coast                                                | 0                              | 0                     | 0                     | 0                     | 95                           | 900                            |
| All councils                                              | 2 185                          | 10 587                | 9 385                 | 4 094                 | 2 446                        | 535                            |
| Regional Centres (Baw Baw,<br>Macedon Ranges and Latrobe) | 323                            | 454                   | 2 094                 | 1 543                 | 1 033                        | 645                            |

Source: UDP Regional Greenfield 2022, available at: https://www.planning.vic.gov.au/land-use-and-population-research/urbandevelopment-program/regional-greenfield-2022

#### Assumed site area per dwelling in our modelling

Table O.4 shows the land take we assume per dwelling in greenfield areas.

For all areas except detached houses in Regional Centres and Rural Areas, we assume that site area per dwelling is as per the average size from ABS's *Land and Housing Supply Indicators* publication. For detached lots in Regional Centres and Rural Areas, we assume they have the same site area per dwelling as detached dwellings in Regional Cities per table 1, which is 678 square metres. This is based on the data from UDP Regional Greenfield 2022, from which we conclude that the site area per dwelling from *Land and Housing Supply Indicators* for detached dwellings in Regional Centres and Rural areas is unlikely to be reflective of the pattern of typical greenfield development.

For apartments in Regional Centres and Rural Areas, we assume that site area per dwelling is the same as in Regional Cities.

| Region category                  | Detached | Attached | Apartment |
|----------------------------------|----------|----------|-----------|
|                                  | Sqm      | Sqm      | Sqm       |
| Melbourne New Growth Area        | 372      | 230      | 150       |
| Regional City                    | 678      | 309      | 163       |
| Regional Centres and Rural Areas | 678      | 302      | 163       |

#### 0.4 Average site area per new dwelling assumed in our modelling

Source: CIE.

## Land take associated with employment and infrastructure uses

Land take in greenfield areas associated with employment and infrastructure uses is based on data about land use in greenfield areas from Precinct Structure Plans (PSPs). This data is obtained from the Victorian Planning Authority Open Data portal.<sup>213</sup> The number of hectares by land use class and type as categorised by VPA is summarised in table 4, excluding "existing" land area, such as existing roads and dwellings. Note that the PSPs specify planned future land use, but actual future land use will not necessarily reflect the PSPs exactly.

Data from the PSPs suggests that there are:

- 0.42 hectares of new infrastructure land per hectare of new residential land, or 0.31 hectares if credited local and municipal open space is excluded, and
- 0.34 hectares of new employment land per hectare of new residential land.

This allows us to estimate the amount of land take in greenfield and regional areas by applying these rates to the amount of residential land take. For example, if there are 10 hectares of new residential land required in an area, we estimate there are 4.2 hectares of new infrastructure land and 3.4 hectares of new employment land required to service these dwellings.

Note that while there are PSPs for regional areas, spatial data for regional PSPs is not published by VPA.<sup>214</sup> For the purpose of the modelling, we assume that the ratio of new infrastructure and employment land per hectare of new employment land is the same in regional areas as implied by the metropolitan Melbourne PSP used in table O.5.

| Land use class                 | Land use type               | Classification | Area     |
|--------------------------------|-----------------------------|----------------|----------|
|                                |                             |                | Hectares |
| Other                          | Investigation Area          | N/A            | 270      |
| Credited Open Space            | Local Open Space            | Infrastructure | 2 103    |
| Developable Area - Employment  | Commercial                  | Employment     | 2 297    |
|                                | Industrial                  | Employment     | 2 579    |
|                                | Town Centre                 | Employment     | 0        |
| Developable Area - Residential | Mixed Use                   | Employment     | 355      |
|                                | Non-Arterial Road           | Infrastructure | 326      |
|                                | Residential                 | Residential    | 20 952   |
|                                | Town Centre                 | Employment     | 731      |
| Education/Community/Government | <b>Community Facilities</b> | Employment     | 156      |
|                                | Education                   | Employment     | 935      |
|                                | Government Services         | Employment     | 10       |
| Other Non-Developable Land     | Existing Developed Land     | Residential    | 81       |
|                                | Utility Facility            | Employment     | 133      |
|                                |                             |                |          |

#### 0.5 Future planned land take in completed PSPs

213 Data is available for download through the open data portal (https://dataplanvic.opendata.arcgis.com/datasets/d0e72fe577bf4a4abf4782a57c8fd386\_0/explore?locatio n=-37.762374%2C144.678768%2C14.73), and full metadata is available for these files at: https://vpa.vic.gov.au/wp-content/uploads/2022/02/VPA-Greenfields-PSP-Spatial-Data-Metadata\_v5.pdf

214 See https://vpa.vic.gov.au/regional/

| Land use class                                          | Land use type             | Classification | Area     |
|---------------------------------------------------------|---------------------------|----------------|----------|
|                                                         |                           |                | Hectares |
| Regional Open Space                                     | Municipal                 | Infrastructure | 207      |
| Transport                                               | Arterial Road             | Infrastructure | 1 364    |
|                                                         | Non-Arterial Road         | Infrastructure | 48       |
|                                                         | Other Transport           | Infrastructure | 0        |
|                                                         | Rail                      | Infrastructure | 91       |
| Uncredited Open Space                                   | Other                     | Infrastructure | 247      |
|                                                         | Cemetery                  | Infrastructure | 2        |
|                                                         | Conservation              | Infrastructure | 1 439    |
|                                                         | Drainage                  | Infrastructure | 2 713    |
|                                                         | Existing Open Space       | Infrastructure | 4        |
|                                                         | Heritage                  | Infrastructure | 36       |
|                                                         | Non-Arterial Road         | Infrastructure | 0        |
|                                                         | Utility Easement/Corridor | Infrastructure | 350      |
| Totals                                                  |                           |                |          |
| Infrastructure                                          |                           |                | 8 931    |
| Infrastructure excluding open space                     |                           |                | 6 621    |
| Employment                                              |                           |                | 7 195    |
| Residential                                             |                           |                | 21 033   |
| Grand Total (infrastructure + employment + residential) |                           |                |          |

Source: VPA open data portal 'Land Use Future Urban Structure' dataset from completed PSPs.

## P Measuring changes in accessibility

There are a number of possible measures of job accessibility:

- absolute measures of job accessibility such as the number of jobs that you have access to within a particular time limit, or the number of high paying jobs within a particular time limit, or a more continuous measure of weighted average job accessibility such as job access density, discussed below.
- jobs accessibility per competing worker these measures account for the number of other people seeking jobs. For example, an area in West Melbourne might have access to a large number of jobs nearby. However, there are twice as many people wanting access to these jobs as there are jobs. This type of measure would reflect that these people will have to travel further afield to find jobs because there is a local deficit in the number or type of jobs.
- job deficits this represents the difference between expected number of job seekers and jobs available in a defined spatial area.

Access to population, which from the perspective of a business represents access to labour supply, can similarly be measured using absolute measures of population accessibility such as the number of people accessible within a time limit, or continuous measures.

We measure using continuous measures, because they do not impose time constraints on which jobs people care about accessing. Commute times exceed 30 or 45 minutes for many people, so an accessibility metric should factor in access levels for these longer journeys as well as access within these thresholds.

Box P.1 shows the specification we use for job access density and population access density.

#### P.1 Calculating access density metrics

Job access density can be represented using the following equation:

$$JA^{j} = \sum_{i} J^{i} f(t^{ji})$$

where

- JA is job access,
- *j* is the travel zone we are looking at,
- *i* is the destination travel zone,
- $J^i$  is the number of jobs at destination *i* and

- $t^{ji}$  is the time to go from j to i.
- The function f(t<sup>ji</sup>) is an exponential e<sup>b.(t<sup>ji</sup>-a)</sup> where time is between a and c.
  Where time is below a it is 1 and where time is above c it is zero. We use the following parameters: a = 15 minutes, b = -0.016 and c = 180 minutes.<sup>215</sup>

Population access density can be represented using the following equation:

$$PA^i = \sum_j P^j.f(t^{ji})$$

where

- *PA* is population access,
- *i* is the travel zone we are looking at,
- *j* is the origin travel zone,
- *P<sup>j</sup>* is the number of people at origin *j* and
- $t^{ji}$  is the time to go from *j* to *i*.
- The function f(t<sup>ji</sup>) is an exponential e<sup>b.(t<sup>ji</sup>-a)</sup> where time is between a and c. We use the same parameters as those used in the job access density function.

These access metrics are not denoted in units that are easy to interpret. Therefore, we calculate them according to the functions above, and then compared them between scenarios using indexes that take value 100 in 2016.

For all accessibility metrics using catchment time thresholds (such as 30 minutes or 45 minutes), we use generalised total time from origin to destination. This weights the components of travel time according to preferences of travellers about the relative disbenefit of increases to each component. Generalised car time is calculated as the sum of in-vehicle time, vehicle operating cost and a travel time penalty dependent on the amount of tolls paid on the journey between travel zones. Generalised public transport time is the minimum generalised time across public transport modes. For public transport (including buses, rail, light rail and ferry) trips, this includes:

- Access time for the main mode of transport, whether by walking, car or bus,
- Waiting time for the transport vehicle (such as waiting at a station)
- In-vehicle time
- 2 minutes of **interchange time** between modes or different vehicles of the same mode
- **Egress time**, which refers to time spent walking between the end of the main mode journey and the final destination.

<sup>215</sup> See the parameters used for the decay curve for commuting trips: KPMG, 2017, *Effective Density*, Appendix A p.7, available at: https://atap.gov.au/public-consultations/files/\_KPMG\_Wider\_Economic\_Benefits\_of\_Transport\_2017.pdf



**THE CENTRE FOR INTERNATIONAL ECONOMICS** *www.TheCIE.com.au*